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In this paper, we investigate the functoriality properties of map-graded Hochschild com-

plexes. We show that the category Map of map-graded categories is naturally a stack over

the category of small categories endowed with a certain Grothendieck topology of 3-

covers. For a related topology of ∞-covers on the Cartesian morphisms in Map, we prove

that taking map-graded Hochschild complexes defines a sheaf. From the functoriality

related to “injections” between map-graded categories, we obtain Hochschild complexes

“with support”. We revisit Keller’s arrow category argument from this perspective, and

introduce and investigate a general Grothendieck construction which encompasses both

the map-graded categories associated to presheaves of algebras and certain generalized

arrow categories, which together constitute a pair of complementary tools for decon-

structing Hochschild complexes.

1 Introduction

Hochschild cohomology originated as a cohomology theory for algebras A. While the

degree 0 cohomology is the center of A and the degree 1 cohomology corresponds to the

derivations of A, the degree 2 cohomology group parameterizes first-order deformations

of A. The relation between Hochschild cohomology and deformation theory is in fact

more profound, and can be understood in terms of the structured Hochschild complex
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2 W. Lowen

C(A). In the mean time, Hochschild cohomology and Hochschild complexes have been

defined for a wide range of objects of algebro-geometric nature, from schemes [21] and

presheaves of algebras [6] to differential graded, exact [12] and abelian categories [15],

and various links with deformation theory have been established in these contexts [5,

14, 16].

An important shortcoming of Hochschild cohomology when compared, for

instance, with Hochschild homology, is its lack of functoriality. Even for algebras, a

morphism f : A−→ B does not naturally give rise to a map between the Hochschild

cohomologies HH∗(A) and HH∗(B) in either direction. When we turn from algebras to

linear categories, that is, algebras with several objects in the sense of [20], the situa-

tion becomes somewhat better. More precisely, the inclusion of a full subcategory b ⊆ a

naturally gives rise to a “restriction” map C(a)−→ C(b) between the Hochschild com-

plexes. Furthermore, this observation of limited functoriality provides a way to relate

the Hochschild complexes of categories related by a bimodule, through an intermedi-

ate arrow category. In [12], the arrow category argument for structured (B∞-algebra)

Hochschild complexes is developed by Keller in the context of dg categories. The main

applications of this argument can be divided into two types:

(1) Relating the Hochschild complex of a more involved object (the arrow cate-

gory) to the Hochschild complexes of it’s easier building blocks (two smaller

categories and a bimodule relating them).

(2) Proving that two objects have isomorphic Hochschild complexes in the

homotopy category of B∞-algebras, by relating them via a suitable

bimodule.

Applications of type (1) can be seen as generalizations of results on the Hochschild coho-

mology of triangular matrix algebras, a topic which, since the work of Happel [11],

has received a lot of attention [2, 3, 7–10, 19]. An application of type (2) is the rela-

tion between the Hochschild complexes of Koszul dual algebras obtained in [12]. The

argument is also extensively used in [15] to compare various candidate Hochschild com-

plexes of abelian categories and ringed spaces. The paper [15] also contains some results

more in the spirit of (1), like the existence of Mayer–Vietoris sequences for Hochschild

cohomology of ringed spaces.

The main aim of the current work is to provide a comprehensive treatment of

the natural tools for “breaking down” complicated Hochschild complexes into easier

pieces. In subsequent work, we will apply our results both to improve our understanding

of deformation theory, for instance of schemes, and to the computation of Hochschild
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Hochschild Cohomology with Support 3

cohomology groups of various origins, for instance for singular schemes in the absence

of the classical Hochschild-Kostant-Rosenberg decomposition.

The framework we choose for our exposition is that of map-graded cate-

gories [14]. Although a more powerful theory can be obtained in the combined context of

“map-graded differential graded categories”, for simplicity we present our work in the

context of linear map-graded categories. A map-graded category a can be viewed as a

monoid-graded algebra with several objects. It has an underlying grading category U ,

object sets aU for U ∈ U , and morphism modules au(A, A′) for u: U −→ U ′ in U , A∈ aU and

A′ ∈ aU ′ . Thus, the grading category U can be seen as prescribing a certain shape for a.

The following are examples of naturally map-graded categories:

(i) For a presheaf of k-algebras A : U −→ Alg(k), there is an associated U-graded

category a obtained as a kind of Grothendieck construction from A in the

spirit of [1] (where the input is a pseudofunctor U −→ Cat and the output

is a category fibered over U ). The structured Hochschild complex C(a) con-

trols the deformation theory of A as a twisted presheaf of algebras [14] and

calculates the Hochschild cohomology of A from [4] as shown in [17].

(ii) For two linear categories a and b and an a-b-bimodule M, the arrow category

(b →M a) is naturally graded over the path category of • → •.

Our point of view is that limited functoriality is determined by grading categories in a

fundamental way. In Section 2, we first endow the category Cat of small categories with

the Grothendieck pretopology of n-covers (for n∈ N) for which a collection of functors

(ϕi : Vi −→ U)i∈I is an n-cover provided that it induces a jointly surjective collection of

maps (N (ϕi) :Nn(Vi)−→N (U))i∈I between n-simplices of the simplicial nerves. We show

that the category Map of map-graded categories is naturally fibered over Cat (Proposi-

tion 2.25) and constitutes a stack for n≥ 3 (Corollary 2.40). Let Mapc ⊆ Map denote the full

subcategory of Cartesian morphisms with respect to the fibered category Map −→ Cat. In

Section 4, we show that taking Hochschild complexes defines a functor (Proposition 4.2)

C : Mapc −→ B∞ : (U , a) 
−→ CU (a).

Now endow Mapc with the pretopology of ∞-covers for which the collection ((ϕi, Fi) :

(Vi, bi)−→ (U , a))i∈I is an ∞-cover provided that the collection (ϕi : Vi −→ U)i∈I is an ∞-

cover in Cat, that is, an n-cover for every n≥ 0. Our Theorem 4.7 implies the following

theorem.
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4 W. Lowen

Theorem 1.1. The functor C : Mapc −→ B∞ is a sheaf for the pretopology of ∞-covers on

Map. �

As an application of the theorem, in Section 4.5 we obtain a Mayer–Vietoris

sequence of Hochschild complexes for a U-graded category a and two subcategories

ϕi : Vi ⊆ U for i ∈ {1,2} that constitute an ∞-cover of U :

0 −→ CU (a)−→ CV1(a
ϕ1)⊕ CV2(a

ϕ2)−→ CV1∩V2(a
ϕ)−→ 0.

Here (Vi, a
ϕi )−→ (U , a) and (V1 ∩ V2, a

ϕ)−→ (U , a) are chosen to be Cartesian.

In Section 5, we start from a single subcategory ϕ : V ⊆ U , and a Cartesian functor

(V, b)−→ (U , a). This gives rise to a surjective morphism between Hochschild complexes

CU (a)−→ CV(b) of which we investigate the kernel CU\V(a). The results we obtain depend

upon the assumption that the U-morphisms outside of V constitute an ideal Z in U . In

this case, we show in Proposition 5.3 that

CU\V(a)∼= CU (a, (1a)Z),

where (1a)Z is the natural restriction of 1a to an a-bimodule supported on Z (i.e., with

zero values outside of Z). An example where our setup applies is the situation where

U is the category associated to a collection of open subsets of a topological space X

ordered by inclusion, V is the full subcategory of subsets U ⊆ V for a fixed subset V , and

Z contains the inclusions U ′ ⊆ U with U � V .

In Section 5.7, we revisit the arrow category construction from [12] in the

map-graded context. For a (U , a)-(V, b)-bimodule (S,M), we take the natural inclusion

V
∐

U −→ (V →S U) and corresponding Cartesian functor

(
V
∐

U , b
∐

a
)

−→ (V →S U , b →M a),

as starting point for obtaining map-graded analogs of some of the main results from [12].

Sections 5.9 and 5.10 are entirely modeled upon the treatment in [12], and mainly for-

mulate results from [12] in the map-graded context, making use of the natural Hom and

tensor functors from Section 3.2. Further, in Section 5.8, we give an intrinsic character-

ization of arrow categories based upon the thin ideals introduced in Section 5.6.

In Section 6, we present a unified framework for constructing map-graded cat-

egories and deconstructing their Hochschild complexes. Our main observation is that
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Hochschild Cohomology with Support 5

both examples (i) and (ii) that we gave of map-graded categories can be viewed as spe-

cial cases of a generalized Grothendieck construction for map-graded categories. The

classical Grothendieck construction from [1] takes a pseudofunctor U −→ Cat as input

and turns it into a category fibered over U . The construction from [14] of which we gave

an example in (i) is clearly a k-linearized version of this construction, using the category

Cat(k) of k-linear categories instead of Cat. If we relax Cat(k) to the bicategory Cat(k) of

k-linear categories and bimodules, we can in fact describe any U-graded category as a

kind of Grothendieck construction of a naturally associated pseudofunctor

a : U −→ Cat(k) : U 
−→ aU .

In the paper, we go yet another step further and start from a pseudofunctor

(U , a) : C −→ Map : C 
−→ (UC , aC ),

where C is a small category and Map is the bicategory of map-graded categories and

bimodules described in Section 3.2. Allowing arbitrary bimodules rather than functors

between map-graded categories allows us to capture the arrow category with respect to

a bimodule from (ii). In general, we can now deconstruct the Hochschild complex of the

Grothendieck construction (Ũ, ã) of (U , a) based upon the internal structure of C. Here,

the strategy is to cover (Ũ , ã) by other Grothendieck constructions, based upon base

change for pseudofunctors from Section 6.5. For instance, in Proposition 6.7, we prove

the following proposition.

Proposition 1.2. Suppose that C has finite products. Let C∗ be the category C with ter-

minal object ∗ adjoined. Put (Ũ |∗, ã|∗)= (Ũ , ã) and let (Ũ |C , ã|C ) be the Grothendieck con-

struction of the restriction of (U , a) to C/C . Let (Ci)i∈I be a collection of objects in C such

that for every C ∈ C there exists a map C −→ Ci for some i. There is a natural functor

C : C∗ −→ B∞ : C 
−→ CŨ |C (ã|C ),

which satisfies the sheaf property with respect to the collection of maps (Ci −→ ∗)i∈I

in C∗. �

Let us now restrict our attention to the case where C is the category associated

to a poset. Then it is not hard to see that C can be covered by path categories of:

• → • → · · · → · · · → • → •.
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6 W. Lowen

In Section 6.6, we consider the Grothendieck constructions of such categories as “gener-

alized arrow categories”, and deconstruct them using iterated arrow category construc-

tions. As such, we see in Section 6.7 how the sheaf property for Hochschild complexes

on the one hand, and the arrow category construction on the other hand, can be seen as

complementary tools for deconstructing Hochschild cohomology.

In Section 6.8, we consider a pseudofunctor (U , a) : C −→ Mapc with some

extension (U �, C�) : C∗ −→ Mapc, which we compare with the natural pseudofunctor of

Grothendieck constructions

(U∗, a∗) : C∗ −→ Mapc : C −→ (Ũ |C , ã|C ).

Our main Theorem 6.14 encompasses the following comparison result.

Theorem 1.3. There is a morphism of pseudofunctors landing in the homotopy category

of B∞-algebras

CU∗(a∗)−→ CU� (a�),

in which every component morphism is a quasi-isomorphism except possibly the top

one. The situation where the top morphism is a quasi-isomorphism too can be charac-

terized by the usual bimodule criterion from [12]. �

The proof of the theorem is heavily based upon Keller’s arrow category argu-

ment in the case of a fully faithful functor b −→ a, which is in fact a special case of our

theorem. A combination of Proposition 1.2 and Theorem 1.3 allows us to pull a decon-

struction of Hochschild complexes of Grothendieck constructions back to a deconstruc-

tion of the Hochschild complexes of the categories (U �∗ , a�∗) and (UC , aC ) in which we are

primarily interested—at least in the homotopy category of B∞-algebras. In particular,

exact sequences of Mayer–Vietoris type now naturally give rise to Mayer–Vietoris exact

triangles, inducing the desired long exact cohomology sequences. As an application, we

recover the Mayer–Vietoris triangles for ringed spaces from [15, Section 7.9].

2 Map-Graded Categories

Let k be a commutative ground ring. In this section, we introduce the category Map

of small k-linear map-graded categories and functors, which is naturally fibered over

the category Cat of small categories and functors. We also introduce the intermediate

category Mas of map-graded sets. A map-graded set (U , a) consists of a small category

U and for every object U ∈ U , a set aU . A map-graded category (U , a) is a map-graded
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Hochschild Cohomology with Support 7

set with additionally, for every morphism u: U −→ U ′ in U , A∈ aU and A′ ∈ aU ′ , a k-

module au(A, A′). These modules are endowed with category-like composition and iden-

tity morphism [14]. Every map-graded set or category (U , a) has an associated object

(U �, a�) of the same kind, with “ungrouped object sets”, that is, with Ob(U �)=∐
U∈U aU

and (a�)A = {A}. We define the nerve N (a) of (U , a) to be the simplicial nerve N (U �). For

small categories, map-graded sets, and map-graded categories, we define pretopologies

of n-covers by declaring a collection of functors to be an n-cover provided that for p≤ n

the induced collection of maps between p-simplices of the nerves is jointly surjective

(Definition 2.30). We prove that for n≥ 0, Mas is a stack over Cat (Theorem 2.36) and for

n≥ 3, Map is a stack over Mas (Theorem 2.38) and over Cat (Corollary 2.40).

2.1 Fibered categories and stacks

In this section, we recall the basic concepts concerning fibered categories and stacks [1,

22], and give some results we will use later on.

Let U be a category. A category over U is a functor F : A−→ U . The functor is

perceived from the point of view of its fibers. That is, for every U ∈ U we consider the

fiber of objects over U :

AU = {A∈A | F (A)= U },

and for u: V −→ U , A∈AU , B ∈AV , we consider the fiber of morphisms over u:

Au(B, A)= {a∈A(B, A) | F (a)= u}.

A morphisms a : B −→ A in A with F (a)= u: V −→ U is Cartesian (with respect

to F ) provided that for every v : W −→ V in U and C ∈AW, the composition map

a− :Av(C , B)−→Auv(C , A)

is an isomorphism.

The category A is called fibered over U provided that for every u: V −→ U in U
and A∈AU , there is an object u∗ A∈AV and a Cartesian morphism δu,A ∈Au(u∗ A, A). The

choice, for every u and A, of such a Cartesian morphism δu,A is called a cleavage. For a

fibered category with a cleavage, there is an associated pseudofunctor

A : U op −→ Cat : U 
−→A(U ),
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8 W. Lowen

where Cat denotes the category of small categories. Here A(U ) is the category with object

set given by AU and A(U )(B, A)=A1U (B, A). For a map u: V −→ U in U , the corresponding

functor u∗ :A(U )−→A(V) is naturally determined by the chosen Cartesian morphisms.

Proposition 2.1. Let F :A−→ U be a fibered category over U with a cleavage. Suppose for

v : W −→ V , u: V −→ U in U and A∈AU , and for the Cartesian morphisms δu,A : u∗ A−→ A,

δv,u
∗ A : v∗u∗ A−→ u∗ A, and δuv,A : (uv)∗ A−→ A, we have v∗u∗ A= (uv)∗ Aand δu,Aδv,u

∗ A = δuv,A.

Then the associated pseudofunctor A : U op −→ Cat is actually a functor. �

Next we recall the definition of a pretopology. Let U be a category with pullbacks.

A pretopology on U consists of the notion of a covering collection of maps (Ui −→ U )i∈I ,

also called a cover of the object U , satisfying the following axioms:

(1) The collection consisting of 1U : U −→ U is a cover of U .

(2) If (Ui −→ U )i∈I is a cover of U and u: V −→ U an arbitrary map, the collection

of pullbacks (V ×U Ui −→ V)i∈I is a cover of V .

(3) If (Ui −→ U )i∈I is a cover of U and for every i ∈ I , (Uij −→ Ui) j∈Ji is a cover

of Ui, then the collection of compositions (Uij −→ Ui −→ U )i∈I, j∈Ji is a cover

of U .

On a category U with pullbacks, the notion of pretopology can be seen as describ-

ing somewhat more tangible input data for a Grothendieck topology. More precisely,

a Grothendieck topology is obtained by defining a sieve R⊆ U(−,U ) to be covering if and

only if it contains a covering collection of maps for the given pretopology.

Consider a fibered category A over U with a cleavage and associated pseudofunc-

tor. Let there be given a pretopology on U and let S = (Ui −→ U )i∈I be a cover of U ∈ U . The

descent category Des(S,A) is defined in the following way. An object, called a descent

datum, consists of a collection (Ai)i∈I of objects with Ai ∈A(Ui), together with for every

i, j ∈ I an isomorphism α∗
1(Ai)∼= α∗

2(Aj) in A(Uij) for the pullback

Ui
�� U

Uij

α1

��

α2

�� U j

��

These isomorphisms have to satisfy the natural compatibility requirement on triple

pullbacks. A morphism between descent data (Ai)i −→ (Bi)i consists of compatible
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Hochschild Cohomology with Support 9

morphisms Ai −→ Bi in A(Ui). The fibered category A is called a stack (respectively, a

prestack) provided that the natural comparison functor

A(U )−→ Des(S,A) : A 
−→ (u∗
i A)i

is an equivalence of categories (respectively, fully faithful) for every cover S = (ui : Ui −→
U )i∈I .

Next we collect some useful facts concerning composable functors G : A−→X
and F :X −→ U . We suppose that all three categories have pullbacks and the functors F

and G preserve pullbacks.

Proposition 2.2. (1) If a morphism a : A−→ A′ in A is Cartesian with respect to G and

G(a) is Cartesian with respect to F , then a is Cartesian with respect to F G.

(2) If both F and G are fibered, then so is F G. �

Proposition 2.3. Suppose that U is endowed with a pretopology. There is a pretopology

on X for which (xi : Xi −→ X)i is a cover of X if and only if (F (xi) : F (Xi)−→ F (X))i is a

cover of F (X). �

Proposition 2.4. Consider morphisms in X :

X2
x2

�� X1
x1

�� X .

(1) If x2 and x1 are Cartesian, then so is x1x2.

(2) If x1 and x1x2 are Cartesian, then so is x2. �

Proposition 2.5. Consider a commutative square in X :

X1

x1

�� X

X12

y1

��

y2

�� X2

x2

��

(1) If the square is a pullback and x2 is Cartesian, then so is y1.

(2) If the image of the square under F is a pullback, and the morphisms x1, x2,

y1, y2 are Cartesian, then the square is a pullback. �
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10 W. Lowen

Proposition 2.6. There is a pretopology on X for which (xi : Xi −→ X)i is a cover of X if

and only if the morphisms xi are Cartesian with respect to F . �

Proposition 2.7. Suppose that U is endowed with a pretopology. There is a pretopology

on X for which (xi : Xi −→ X)i is a cover of X if and only if the following two conditions

hold:

(1) (F (xi) : F (Xi)−→ F (X))i is a cover of F (X);

(2) every xi is Cartesian with respect to F . �

Now suppose that both F and G are fibered, and consider a cleavage for both

functors. For a morphism u: V −→ U in U and A∈AU with respect to F G, we obtain

the Cartesian morphism x = δu,G(A) : u∗G(A)−→ G(A) in X . Next we obtain the Cartesian

morphism δx,A : x∗ A−→ A. We obtain a cleavage for F G by putting u∗ A= x∗ A and δu,A =
δx,A. Let U be endowed with a pretopology and endow X with the pretopology described

in Proposition 2.7. Let X F be the pseudofunctor associated to F : X −→ U , AG be the one

associated to G :A−→X , and AF G be the one associated to F G : A−→ U .

Proposition 2.8. If X F and AG are stacks (respectively, prestacks), then so is AF G . �

2.2 Map-graded categories and functors

Let U be a base category. A U-graded set x consists of the datum, for every U ∈ U , of a set

xU . A (k-linear) U-graded category (see [14]) a consists of the following data:

(1) For every U ∈ U , a set aU of objects over U .

(2) For every u: V −→ U in U , B ∈ aV , A∈ aU , a k-module au(B, A) of morphisms

over u.

(3) For a further v : W −→ V in U and C ∈ aW, a composition map

au(B, A)⊗k av(C , B)−→ auv(C , A).

(1) For A∈ aU , an identity element

1A ∈ a1U (A, A).

These data should satisfy the obvious category-type axioms, that is, the com-

position has to be associative and the identity elements have to act identically under

composition. There is an associated k-linear category ã with Ob(ã)=∐
U∈U aU and
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Hochschild Cohomology with Support 11

a(AV , AU )=
⊕

u∈U(V,U ) au(AV , AU ). Clearly, a U-graded category has an underlying U-

graded set given by the object sets.

Remark 2.9. The definition of a k-linear U-graded category is a k-linearized version

of the notion of a category over U from Section 2.1. Indeed, if we drop k-linearity

from the definition, a U-graded category A now has a natural associated category Ã
with Ã(AV , AU )=

∐
u∈U(V,U ) au(AV , AU ). Hence, there is a natural functor Ã−→ U , and the

datum of this functor is equivalent to the datum of A. To avoid confusion, for us a

U-graded category will implicitly mean a k-linear U-graded category over some fixed

k, whereas we will refer to the nonlinear variant explicitly as a nonlinear U-graded

category. �

Example 2.10. Suppose that U has a single object ∗ and a∗ = {∗}. Then G = U(∗, ∗) is a

monoid, and a corresponds to a G-graded algebra A with Ag = ag(∗, ∗). Thus, in the spirit

of [20], we can view map-graded categories as monoid-graded algebras with several

objects. �

Example 2.11. A k-linear category a can be made into a graded category in several

natural ways:

(1) Let Ua be the category with Ob(Ua)= Ob(a) and Ua(B, A)= {∗} for all B, A∈
a. Then we can make a into a Ua-graded category ast with (ast)A = {A} and

(ast)∗(B, A)= a(B, A). We refer to this grading as the standard grading on a.

(2) Let e be the category with one object ∗ and one morphism 1∗. Then we can

make a into an e-graded category atr with (atr)∗ = Ob(a) and (atr)1∗(B, A)=
a(B, A). We refer to this grading as the trivial grading on a.

(3) Clearly, every partition of Ob(a) will give rise to a graded incarnation of a “in

between” the two extremes described in (1) and (2). �

Example 2.12. Let U be a category. The free U-graded category kU is defined by putting

kUU = {U } and kUu(V,U )= k for all u: V −→ U ∈ U . Compositions are defined by means of

the multiplication of k, and identity elements are provided by the unit of k. Instead of k,

we can actually use an arbitrary k-algebra A and perform a similar construction. �

Example 2.13. Let x be a U-graded set. There is an associated small category U � and

a U �-graded set x� involving only singleton sets above the objects of U �. Precisely,

we put Ob(U �)=∐
U∈U xU and U �(XU , XU ′)= U(U,U ′), and x

�

XU
= {XU }. If a is a U-graded
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12 W. Lowen

category, we further obtain the U �-graded category a� with in addition a
�
u(AU , AU ′)=

au(AU , AU ′). �

Example 2.14. With the notation of Example 2.11, for a k-linear category, we have

(Ua, ast)= (e, atr)
�. �

Let ϕ : V −→ U be a functor, x be a U-graded set, and y be a V-graded set. A ϕ-

graded map F consists of maps FV : yV −→ xϕ(V) for every V ∈ V.

Let a be a U-graded category and b be a V-graded category. A ϕ-graded functor

F consists of the following data:

(1) For every V ∈ V, a map FV : bV −→ aϕ(V).

(2) For every v : V −→ V ′ in V, B ∈ bV and B ′ ∈ bV ′ , a k-linear map

bv(B, B ′)−→ aϕ(v)(F (B), F (B ′)).

These data should satisfy the obvious functoriality-type axioms, that is, F

respects compositions and identity elements. Clearly, a ϕ-graded functor has an under-

lying ϕ-graded map between object sets. Let an underlying ground ring k be fixed.

Map-graded categories (respectively, sets) and functors (respectively, maps) constitute

a category Map (respectively, Mas) in the following way. An object of Map (respec-

tively, Mas) is given by a small category U and a U-graded category (respectively, set)

a. A morphism (U , a) 
−→ (V, b) is given by a functor ϕ : U −→ V and a ϕ-graded functor

(respectively, map) F : a −→ b.

Example 2.15. Let a be a linear category. Let (ast,Ua) be the graded category result-

ing from the standard grading on a as in Example 2.11(1) and let (atr, e) be the graded

category resulting from the trivial grading on a as in Example 2.11(2). Let ϕ : Ua −→ e

be the unique functor. The map (ast)A = {A} −→ Ob(a)= (atr)∗ : A 
−→ A and the maps

1 : (ast)∗(A, A′)= a(A, A′)−→ a(A, A′)= (atr)∗(A, A′) define a ϕ-graded functor. �

Example 2.16. Let a be a U-graded category and b be a linear category with associated

e-graded category btr with trivial grading as in Example 2.11(2) and let ϕ : U −→ e be

the unique functor. There is a one-to-one correspondence between ϕ-graded functors

a −→ btr and k-linear functors ã −→ b. �

Example 2.17. With the notation of Example 2.13, let a be a U-graded set, respectively,

category and let ϕa : U � −→ U be the forgetful functor. There is a ϕa-graded map, respec-

tively, functor Fa : a� −→ a given by F (AU )= AU ∈ aU (and 1 : a�u(A, A′)−→ au(A, A′) in the
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category case). A graded map, respectively, functor (ϕ, F ) : (V, b)−→ (U , a) gives rise to a

commutative square

(V, b)
(ϕ,F )

�� (U , a)

(V�, b�)

(ϕb,Fb)

��

(ϕ�,F �)

�� (U �, a�)

(ϕa,Fa)

��

We thus obtain a natural functor

(−)� : Map −→ Map : (U , a) 
−→ (U �, a�),

and similarly in the case of Mas. �

Example 2.18. Denote the category of small k-linear categories by Cat(k). There are

natural functors Map −→ Cat(k) : a 
−→ ã and Cat(k)−→ Map : a 
−→ atr. By Example 2.16,

the first functor is left adjoint to the second functor. �

2.3 Two fibered categories of map-graded categories

Let k be a fixed commutative ground ring. We consider the categories Map and Mas as

defined in Section 2.2, as well as the category Cat of small categories. There are natural

forgetful functors

Ψ1 : Map −→ Mas : (U , a) 
−→ (U , xa),

where xa is the underlying U-graded set of objects of a and

Ψ0 : Mas −→ Cat : (U , a) 
−→ U .

Further, all three categories Map, Mas, and Cat have pullbacks and the two functors Ψ1

and Ψ0 preserve them. We first look at Cat. For functors ϕ1 : V1 −→ U and ϕ2 : V2 −→ U , the

pullback

V1

ϕ1

�� U

V1 ×U V2

α1

��

α2

�� V2

ϕ2

��
(1)
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14 W. Lowen

is given by the category V1 ×U V2 where

Ob(V1 ×U V2)= Ob(V1)×Ob(U) Ob(V2)

and

(V1 ×U V2)((V1,V2), (V
′
1,V ′

2))= V1(V1,V ′
1)×U(ϕ1(V1),ϕ2(V2)) V2(V2,V ′

2)

are given by the pullbacks in the category of sets. For a collection of functors ϕi : Vi −→ U ,

we similarly obtain a limit category
∏

i,U Vi.

Example 2.19. Consider subcategories V1 ⊆ U and V2 ⊆ U . We define the category V1 ∩
V2 with Ob(V1 ∩ V2)= Ob(V1) ∩ Ob(V2) and (V1 ∩ V2)(V,V ′)= V1(V,V ′) ∩ V2(V,V ′). The

canonical inclusion functors V1 ∩ V2 ⊆ V1 and V2 ⊆ V1 ∩ V2 induce an isomorphism of cat-

egories V1 ∩ V2
∼= V1 ×U V2. �

Pullbacks in Mas and Map are described in a similar fashion. For instance, the

pullback of graded categories is described by

(V1, b1)

(ϕ1,F1)

�� (U , a)

(V1 ×U V2, b1 ×a b2)

(α1,G1)

��

(α2,G2)

�� (V2, b2)

(ϕ2,F2)

��

with underlying pullback of categories described by (1) and with

(b1 ×a b2)(V1,V2) = (b1)V1 ×aϕ1(V1)
(b2)V2

and

(b1 ×a b2)(v1,v2)((B1, B2), (B
′
1, B ′

2))= (b1)v1(B1, B ′
1)×aϕ1(v1)(F1(B1),F1(B ′

1))
(b2)v2(B2, B ′

2).

Example 2.20. The functors (−)� : Map −→ Map and (−)� : Mas −→ Mas from Exam-

ple 2.17 preserve pullbacks. �

Thus, the results of Section 2.1 apply to the composable functors Ψ0 and Ψ1. In

the remainder of this section, we show that both these functors are fibered.
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We start with Ψ0. Let ϕ : V −→ U be a functor and x be a U-graded set. We define

the V-graded set xϕ with
x
ϕ

V = xϕ(V),

and the morphism of graded sets (ϕ, δϕ,x) : (V, xϕ)−→ (U , x) with δ
ϕ,x
V : xϕV = xϕ(V) −→ xϕ(V)

given by the identity morphism.

Proposition 2.21. A morphism (ϕ, F ) : (V, y)−→ (U , x) of graded sets is Cartesian with

respect to Ψ0 if and only if for every V ∈ V the map FV : yV −→ xϕ(V) is an isomorphism of

sets. �

Proposition 2.22. (1) The morphisms (ϕ, δϕ,x) are Cartesian with respect to Ψ0.

(2) The category Mas is fibered over Cat through Ψ0. �

Next we look at Ψ1. Let (ϕ, F ) : (V, y)−→ (U , x) be a morphism of graded sets,

and let a be a U-graded category with underlying graded set x. We define the V-graded

category aϕ,F with

a
ϕ,F
V = yV ,

and with, for v : V −→ V ′ in V, Y ∈ yV , Y′ ∈ yV ′ :

aϕ,Fv (Y,Y′)= aϕ(v)(F (Y), F (Y′)),

and with, for another v′ : V ′ −→ V ′′ in V and Y′′ ∈ yV ′′ , the composition in aϕ,F

aϕ(v′)(F (Y
′), F (Y′′))⊗ aϕ(v)(F (Y), F (Y′))−→ aϕ(v′v)(F (Y), F (Y′′))

defined by the composition in a, and similarly for the identity elements in

a
ϕ,F
1V
(Y,Y)= a1ϕ(V) (F (Y), F (Y)). We define the morphism of graded categories (ϕ, δ = δϕ,F,a) :

(V, aϕ,F )−→ (U , a) by the morphisms δV = FV : yV −→ aϕ(V) and the identity morphisms

aϕ,Fv (Y,Y′)= aϕ(v)(F (Y), F (Y′))−→ aϕ(v)(F (Y), F (Y′)).

Proposition 2.23. A morphism (ϕ, F ) : (V, b)−→ (U , a) of graded categories is Cartesian

with respect to Ψ1 if and only if for every v : V −→ V ′ in V, B ∈ bV , B ′ ∈ bV ′ , the map

bv(B, B ′)−→ aϕ(v)(F (B), F (B ′)) is an isomorphism. �

Proposition 2.24. (1) The morphisms (ϕ, δϕ,F,a) are Cartesian with respect to Ψ1.

(2) The category Map is fibered over Mas through Ψ1. �
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16 W. Lowen

By Proposition 2.2, as a consequence of Propositions 2.22 and 2.24, the category

Map is fibered over Cat through Ψ . We end this section by describing the cleavage which

follows from the higher cleavages for Ψ0 and Ψ1.

Let a be a U graded category and let ϕ : V −→ U be a functor. We define the V-

graded category aϕ with

a
ϕ

V = aϕ(V),

and with, for v : V −→ V ′ in V, A∈ a
ϕ

V and A′ ∈ a
ϕ

V ′

aϕv (A, A′)= aϕ(v)(A, A′).

For another v′ : V ′ −→ V ′′ in V and A′′ ∈ a
ϕ

V ′′ , the composition in aϕ

aϕ(v′)(A
′, A′′)⊗ aϕ(v)(A, A′)−→ aϕ(v′v)(A, A′′)

is defined by the composition in a, and similarly for the identity elements in aϕ(1V )(A, A)=
a1ϕ(V) (A, A). We further define the morphism of graded categories (ϕ, δϕ,a) : (V, aϕ)−→
(U , a) for which the maps

a
ϕ

V −→ aϕ(V)

are given by identities and the maps

aϕv (A, A′)−→ aϕ(v)(A, A′),

as well.

Proposition 2.25. (1) The morphisms (ϕ, δϕ,a) are Cartesian with respect to Ψ1.

(2) The category Map is fibered over Cat through Ψ . �

Proposition 2.26. A morphism (ϕ, F ) : (V, b)−→ (U , a) of graded categories is Cartesian

with respect to Ψ if and only if the following hold:

(1) For V ∈ V, the map FV : bV −→ aϕ(V) is an isomorphism.

(2) For v : V −→ V ′ in V, B ∈ bV , B ′ ∈ bV ′ , the map bv(B, B ′)−→ aϕ(v)(F (B), F (B ′)) is

an isomorphism. �

To distinguish between the notions arising in Propositions 2.23 and 2.26, we

make the following definition.
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Definition 2.27. Consider a morphism (ϕ, F ) : (V, b)−→ (U , a) between graded cate-

gories.

(1) (ϕ, F ) is called Cartesian if it is Cartesian with respect to Ψ .

(2) (ϕ, F ) is called sub-Cartesian if it is Cartesian with respect to Ψ1. �

Remark 2.28. (1) If (ϕ, F ) is Cartesian, then it is sub-Cartesian.

(2) (ϕ, F ) is sub-Cartesian if and only if (ϕ�, F �) as defined in Example 2.17 is

Cartesian. �

Example 2.29. Let b −→ a be a fully faithful k-linear functor between k-linear cate-

gories. With the notation from Example 2.11, the natural graded functor (e, btr)−→
(e, atr) is sub-Cartesian and the functor (Ub, bst)−→ (Ua, ast) is Cartesian (see also Exam-

ple 2.14). �

2.4 Sites of categories, graded sets, and graded categories

In this section, we will introduce pretopologies on the categories Cat, Mas, and Map. We

start by introducing appropriate nerves. For a small category U , we denote by N (U) the

simplicial nerve of U . Concretely, for n≥ 1, Nn(U) consists of the n-simplices

U0
u0

�� U1
u1

�� . . .
un−1

�� Un ,

with Ui ∈ Ob(U) and ui ∈ Mor(U), and N0(U)= Ob(U). Note that N1(U)= Mor(U). For a

functor ϕ : V −→ U , we obtain an induced map N (ϕ) : N (V)−→N (U) between the nerves,

with components Nn(ϕ) :Nn(V)−→Nn(U).
For a U-graded category or set a, we consider the associated category U � from

Example 2.13 with Ob(U �)=∐
U∈U aU and U �(AU , A′

U ′)= U(U,U ′). We define the nerve of a

to be N (a)=N (U , a)=N (U �). By Example 2.17, a graded map or functor (ϕ, F ) : (V, b)−→
(U , a) induces an associated map N (F ) : N (b)−→N (a) given by N (ϕ�) : N (V�)−→
N (U �).

Definition 2.30. Let n∈ N ∪ {∞}. A collection of functors, graded maps, or graded func-

tors (Fi : bi −→ a)i∈I is an n-cover of a in Cat, in Mas, or in Map, respectively, if for all

k∈ N with k≤ n, the collection of maps (Nk(Fi))i∈I is jointly surjective. �
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18 W. Lowen

Thus, a collection of graded maps (respectively, graded functors) (ϕi, Fi) :

(Vi, bi)−→ (U , a) is an n-cover of a in Mas (respectively, in Map) if and only if the collection

of functors (ϕ� : V�i −→ U �)i∈I is an n-cover in Cat.

Lemma 2.31. Let n∈ N. Consider a collection of functors, graded maps, or graded func-

tors, respectively, S = (Fi : bi −→ a)i∈I . If the collection of maps (Nn(Fi))i∈I is jointly sur-

jective, then S is an n-cover in Cat, in Mas, or in Map, respectively. �

Proof. Let k<n. Let us look at the graded cases, and let a be graded over U and b over

Vi. Every k-simplex u for U � gives rise to an n-simplex u′ by adding n− k identity maps

1U0 : U0 −→ U0. If u′ = ϕi(v
′) for some i and v′ ∈ V�i , then removing the first n− k maps from

v′ yields a k-simplex v with ϕ(v)= u. �

Lemma 2.32. Let n∈ N. Consider a pullback in Cat, Mas, or Map:

b1

F1

�� a

b1 ×a b2

G1

��

G2

�� b2

F2

��

We have Nn(b1 ×a b2)∼=Nn(b1)×N (a) N (b2). �

Proposition 2.33. Let n∈ N ∪ {∞} be fixed. The n-covers from Definition 2.30 define pre-

topologies on Cat, Mas, and Map. �

Proof. The identity and glueing properties are immediate. Concerning the pullback

property, we note that in Set, the pullback of a jointly surjective collection of maps is

jointly surjective. Hence, the result follows from Example 2.20. �

Example 2.34. (1) A functor ϕ : V −→ U which is full and surjective on objects constitutes

an ∞-cover of U in Cat.

(2) Consider a collection of objects (Ui)i∈I in the category U and the associated

collection of functors (ϕi : U/Ui −→ U)i∈I . The collection (ϕi)i is a 1-cover in
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Hochschild Cohomology with Support 19

Cat if for every object U ∈ U , there exists a morphism U −→ Ui for some i. In

this case, the collection (ϕi)i is automatically an ∞-cover of U . �

2.5 The stack of map-graded sets

Consider the functor Ψ0 : Mas −→ Cat and consider the pretopology Tn of n-covers from

Proposition 2.33 on Cat for some n∈ N ∪ {∞}.

Proposition 2.35. The pseudofunctor Mas associated to Ψ0 is a functor. �

Let S = (ϕi : Vi −→ U)i be an n-cover of U in Cat. We introduce some notation to

be able to describe the descent category Des(S,Mas). We put Vi j = Vi ×U V j and Vi jk =
Vi ×U V j ×U Vk. We denote the canonical maps from a k-fold pullback by α1, . . . , αk to

avoid confusion when some of the indices i, j, . . . coincide. For example, we have α1 :

Vi j −→ Vi and α2 : Vi j −→ V j. For bi ∈ Mas(Vi), we use notation like bi|1i j = bα1
i ∈ Map(Vi j)

and b j|2i jk = bα2
j ∈ Map(Vi jk). The descent category Des(S,Mas) has objects given by (bi)i

with bi ∈ Mas(Vi) along with compatible isomorphisms

ρi j : bi|1i j
∼= b j|2i j.

Precisely, we require that the cocycle condition

(ρ jk|23
i jk)(ρi j|12

i jk)= ρik|13
i jk (2)

on triple pullbacks holds. Consider (V1,V2,V3) ∈ Vi jk. We have (ρ jk|23
i jk)(V1,V2,V3) = (ρ jk)(V2,V3) :

(b j)V2 −→ (bk)V3 , (ρi j|12
i jk)(V1,V2,V3) = (ρi j)(V1,V2) : (bi)V1 −→ (b j)V2 , (ρik|13

i jk)(V1,V2,V3) = (ρik)(V1,V3) :

(bi)V1 −→ (bk)V3 . Hence, from (2, we obtain

(ρ jk)(V2,V3)(ρi j)(V1,V2) = (ρik)(V1,V3). (3)

In particular, we have

(ρii)(V,V) = 1 : (bi)V −→ (bi)V . (4)

Theorem 2.36. The functor Mas is a stack. �

Proof. We may take n= 0. Let S = (ϕi : Vi −→ U)i be a 0-cover of U in Cat.
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20 W. Lowen

First, consider a, b ∈ Mas(U) and a compatible collection of morphism Fi : bϕi −→
aϕi . For the pullback

Vi

ϕi

�� U

Vi j

α1

��

α2

�� V j

ϕ j

��

we have (aϕi )α1 = (aϕ j )α2 and similarly for b, and compatibility amounts to the fact that

(Fi)
α1 = (F j)

α2 . We are to define a unique glueing F : b −→ a. This consists of maps FU :

bU −→ aU for every U ∈ U such that for every i and V ∈ Vi we have (Fi)V = (F ϕi )V = Fϕi(V) :

bϕi(V) −→ aϕi(V). Since we have a 0-cover, for U ∈ U there is some i and some V ∈ Vi with

ϕi(V)= U , so we put FU = (Fi)V . If for another j and V ′ ∈ V j we also have ϕ j(V ′)= U , then

(V,V ′) ∈ Vi j and (Fi)V = (Fi)
α1
(V,V ′) = (F j)

α2
(V,V ′) = (F j)V ′ .

Next we consider a descent datum (bi)i with bi ∈ Mas(Vi) with compatible iso-

morphisms ρi j : bi|1i j
∼= b j|2i j. We define the U-graded set b with

bU =
∐

ϕi(V)=U

(bi)V/∼,

where for X1 ∈ (bi)V1 and X2 ∈ (b j)V2 we have X1 ∼ X2 if and only if the two elements

correspond through the isomorphism (ρi j)(V1,V2) : (bi)V1 −→ (b j)V2 . The relation ∼ is obvi-

ously symmetric, it is transitive by (3) and reflexive by (4). For every i and V ∈ Vi with

ϕi(V)= U , the canonical map (bi)V −→ bU is an isomorphism, giving rise to a compatible

collection of isomorphisms Fi : bi −→ bϕi constituting an isomorphism F : (bi)i −→ (bϕi )i

in Des(S,Mas). �

2.6 The stack of map-graded categories

Consider the functor Ψ1 : Map −→ Mas and consider the pretopology Tn of n-covers from

Proposition 2.33 on Mas for some n∈ N ∪ {∞}.

Proposition 2.37. The pseudofunctor Map associated to Ψ1 is a functor. �

Let S = ((ϕi, Fi) : (Vi, yi)−→ (U , x))i be an n-cover of x in Mas. We use notation that

is similar to the notation introduced in Section 2.5. Pullbacks are denoted by yi j = yi ×x y j

and yi jk = yi ×x y j ×x yk and for bi ∈ Map(yi), restrictions are denoted by bi|1i j ∈ Map(yi j),

etc. The descent category Des(S,Map) has objects given by (bi)i with bi ∈ Map(yi) along
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with compatible isomorphisms

ρi j : bi|1i j
∼= b j|2i j,

for which the cocycle condition (2) holds. To unravel this condition, we now

consider maps vκ : (Vκ ,Yκ)−→ (V ′
κ ,Y

′
κ) in V�κ for κ ∈ {1,2,3} Suppose (v1, v2, v3) ∈ yi jk.

We have (ρi j)v1,v2 : (bi)v1(Y1,Y′
1)−→ (b j)v2(Y2,Y′

2), (ρ jk)v2,v3 : (bi)v2(Y2,Y′
2)−→ (b j)v3(Y3,Y′

3),

(ρik)v1,v3 : (bi)v1(Y1,Y′
1)−→ (bk)v3(Y3,Y′

3) and by (2)

(ρ jk)v2,v3(ρi j)v1,v2 = (ρik)v1,v3 . (5)

In particular, we have

(ρii)v1,v1 = 1 : (bi)v1(Y1,Y
′
1)−→ (bi)v1(Y1,Y

′
1). (6)

Theorem 2.38. (1) If n≥ 2, then Map is a prestack.

(2) If n≥ 3, then Map is a stack. �

Proof. Let S = ((ϕi, Fi) : (Vi, yi)−→ (U , x))i be a 2-cover of x in Mas.

First, consider a, b ∈ Map(x) and a compatible family of morphisms Gi : b|i −→
a|i in Map(yi). Thus, for every Y ∈ (yi)V , Y′ ∈ (yi)V ′ , and v ∈ Vi(V,V ′), we have a

map (Gi)v,Y,Y′ : (b|i)v(Y,Y′)−→ (a|i)v(Y,Y′), that is, a map (Gi)v,Y,Y′ : bϕi(v)(Fi(Y), Fi(Y′))−→
aϕi(v)(Fi(Y), Fi(Y′)). To define a unique glueing G : b −→ a in Map(x), we consider u: U −→
U ′ in U , X ∈ xU , X′ ∈ xU ′ . Since S is a 1-cover, there is an i and v : V −→ V in Vi, Y ∈ (yi)V ,

Y′ ∈ (yi) with ϕi(v)= u, Fi(Y)= X, Fi(Y′)= X′. We put

Gu,X,X′ = (Gi)v,Y,Y′ : bu(X, X′)−→ au(X, X′).

Compatibility of the Gi ensures that G is well defined and the fact that S is a 2-cover

can be used to show that G is a U-graded functor.

Next we consider a descent datum (bi)i with bi ∈ Map(yi)with compatible isomor-

phisms ρi j : bi|1i j
∼= b j|2i j in Map(yi j). We are to define a U-graded category b with underlying

graded set x. For u: (U, X)−→ (U ′, X′) in U �, we first define the set

xu(X, X′)=
∐
(bi)v(B, B ′),

where the coproduct is taken over all v : (V, B)−→ (V ′, B ′) in V�i with ϕi(v)= u, X = Fi(B),

and X′ = Fi(B ′). For w : (W,C )−→ (W′,C ′) in V�j with ϕ j(w)= u, X = F j(C ) and X′ = F j(C ′),
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22 W. Lowen

we use the isomorphism

(ρi j)v,w : (bi)v(B, B ′)∼= (b j)w(C ,C
′),

to declare when morphisms are equivalent. We thus obtain an equivalence relation

on xu(X, X′) such that the quotient bu(X, X′) has a natural k-module structure, and the

canonical morphisms

(bi)v(B, B ′)−→ bu(X, X′)

are k-linear isomorphisms. To define the composition on b, we use the fact that S is

a 2-cover to choose, for u: (U, X)−→ (U ′, X′) in U � and u′ : (U ′, X′)−→ (U ′′, X′′) a single

(ϕi, Fi) : (Vi, yi)−→ (U , x) and v : (V, B)−→ (V ′, B ′), v′ : (V ′, B ′)−→ (V ′′, B ′′) with ϕ
�

i (v)= u,

ϕ
�

i (v
′)= u′ and to use the composition

(bi)v′(B ′, B ′′)⊗ (bi)v(B, B ′)−→ (bi)v′v(B, B ′′).

Finally, to show that the composition is associative, we use the fact that S is a

3-cover. �

Lemma 2.39. Consider the functor Ψ0 : Mas −→ Cat. On Cat, consider the pretopology of

n-covers for some n∈ N ∪ {∞}. On Mas, consider the pretopology of collections consisting

of Cartesian morphisms with respect to Ψ0, that are mapped to an n-cover under Ψ0 (as

described in Proposition 2.7). Every cover for this pretopology is an n-cover in the sense

of Proposition 2.33. �

Corollary 2.40. Consider the functor Ψ =Ψ0Ψ1 : Map −→ Cat and consider the pretopol-

ogy of n-covers from Proposition 2.33 on Cat for some n∈ N ∪ {∞}. The pseudofunctor

Map′ associated to Ψ is a functor.

(1) If n≥ 2, then Map′ is a prestack.

(2) If n≥ 3, then Map′ is a stack. �

Proof. This follows from Theorems 2.36, 2.38, Lemma 2.39, and Proposition 2.8. �

3 Bimodules

In this section, we introduce the bicategory Map of map-graded categories and bimod-

ules between them. We develop the usual machinery of tensor (Section 3.2) and Hom
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(Section 3.3) functors in the map-graded context. Some attention is given to the fact that

in this context, the notion of bimodule is very natural, while there seems to be no natural

notion of module available which does not implicitly or explicitly use bimodules.

3.1 Bifunctors

Let U and V be small categories. A U-V-bifunctor S is by definition a functor

Vop × U −→ Set : (V,U ) 
−→ S(V,U ).

Functoriality translates into the existence of action maps

U(U,U ′)× S(V,U )× V(V ′,V)−→ S(V ′,U ′)

satisfying the natural associativity and identity axioms. For U , we have the identity

U-bifunctor

1U : U op × U −→ Set : (V,U ) 
−→ U(V,U ).

A morphism between U-V-bifunctors S and S′ is a natural transformation S −→ S′. There

is a natural category Bifun(U ,V) of U-V-bifunctors and their morphisms.

Example 3.1. (1) Let ϕ : V −→ U be a functor between small categories. There is an asso-

ciated U-V-bifunctor Sϕ with Sϕ(V,U )= U(ϕ(V),U ).

(2) Let ϕ : U −→ V be a functor between small categories. There is an associated

U-V-bifunctor Sϕ with Sϕ(V,U )= U(V, ϕ(U )). �

Bifunctors can be composed in the following way. Consider an additional small

category W and a V-W bifunctor T . We define S ◦ T to be the U-W-bifunctor with

S ◦ T(W,U )=
∐
V∈V

S(V,U )× T(W,V)/∼,

where for s ∈ S(V,U ), v ∈ V(V ′,V), and t ∈ T(W,V ′) we have (sv, t)∼ (s, vt). There are

canonical isomorphisms (R ◦ S) ◦ T ∼= R ◦ (S ◦ T), 1U ◦ S ∼= S, and S ◦ 1V ∼= S. These give

rise to a bicategory Cat of categories, bifunctors, and natural transformations.
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3.2 Bimodules and tensor functors

Consider a U-graded category a, a V-graded category b, and a U-V-bifunctor S. An a-S-b-

bimodule consists of k-modules Ms(B, A) for s ∈ S(V,U ), B ∈ bV , A∈ aU with actions

au(A, A′)⊗ Ms(B, A)⊗ bv(B
′, B)−→ Musv(B

′, A′)

satisfying the natural associativity and identity axioms.

Example 3.2. (1) Let (ϕ, F ) : (V, b)−→ (U , a) be a graded functor. Let Sϕ be the U-V-

bifunctor from Example 3.1(1). For s ∈ Sϕ(V,U )= U(ϕ(V),U ) and B ∈ bV , A∈ aU , we put

(MF )s(B, A)= as(F (B), A). This defines an a-Sϕ-b-bimodule MF .

(2) Let (ϕ, F ) : (U , a)−→ (V, b) be a graded functor. Let Sϕ be the U-V-bifunctor

from Example 3.1(2). For s ∈ Sϕ(V,U )= V(V, ϕ(U )) and B ∈ bV , A∈ aU , we put

(MF )s(B, A)= bs(B, F (A)). This defines an a-Sϕ-b-bimodule MF . �

The a-S-b-bimodules form an abelian category BimodS(a, b) with the natural

choice of morphisms. If U = V, we can take S = 1U and a-1U -b-bimodules are simply

called a-b-bimodules. The corresponding category is denoted by BimodU (a, b). As usual,

a-a-bimodules are called a-bimodules and the corresponding category is denoted by

BimodU (a). In BimodU (a), we have the identity a-bimodule 1a with (1a)u(A, A′)= au(A, A′).

Similar to [14, Proposition 2.11], the category BimodS(a, b) can be described as a

module category over a linear category. To do so, we define the linear category a
op ⊗S b

with

Ob(a
op ⊗S b)=

∐
s∈S(V,U )

aV × bU

and

Hom((s, A, B), (s′, A′, B ′))=
⊕

s′=usv

au(A, A′)⊗ bv(B
′, B).

Proposition 3.3. There is an isomorphism of linear categories

BimodS(a, b)∼= Mod(a
op ⊗S b). �

Consider an additional W-graded category c and a V-W-bifunctor T . There is a

natural tensor product

BimodS(a, b)× BimodT (b, c)−→ BimodS◦T (a, c) : (M, N) 
−→ M ⊗b N,
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with

(M ⊗b N)r(C , A)=
⊕

[(s,t)]=r,B

Ms(B, A)⊗k Nt(C , B)/∼,

where for s ∈ S(V,U ), v ∈ V(V ′,V), and t ∈ T(W,V ′), B ∈ bV , B ′ ∈ bV ′ , m ∈ Ms(B, A), b ∈
bv(B, B ′), and n∈ Nt(C , B ′) we have (mb,n)∼ (m,bn).

As an application of the tensor product, we obtain tensor actions

⊗b : BimodS(a, b)× BimodV(b)−→ BimodS(a, b) : (M, X) 
−→ M ⊗b X

and

⊗a : BimodU (a)× BimodS(a, b)−→ BimodS(a, b) : (X,M) 
−→ X ⊗a M.

Let (ϕ, F ) : (V, b)−→ (U , a) be a graded functor. There is an induced functor

F ∗ : BimodU (a)−→ BimodV(b) : M 
−→ F ∗M,

with (F ∗M)v(B, B ′)= Mϕ(v)(F (B), F (B ′)).

Example 3.4. For a functor ϕ : V −→ U and a U-graded a, consider the Cartesian ϕ-

graded functor δϕ,a : aϕ −→ a. We obtain the induced functor

(−)ϕ = (δϕ,a)∗ : BimodU (a)−→ BimodV(aϕ) : M 
−→ Mϕ,

with Mϕ
v (A, A′)= Mϕ(v)(A, A′). �

Letting S vary, we obtain a category Bimod(a, b) of a-b bimodules in the following

way. An a-b bimodule consist of a U-V-bifunctor S and an a-S-b-bimodule N. A morphism

of bimodules (φ, F ) : (S,M)−→ (T, N) consists of a natural transformation φ : S −→ T of

bifunctors and, for every A∈ aU , B ∈ bV , and s ∈ S(V,U ), a morphism

Fs,B,A : Ms(B, A)−→ Nφ(s)(B, A),

such that the morphisms Fs,B,A are compatible with the actions of a and b.

Combining the composition of bifunctors and the tensor product of bimodules,

we obtain a tensor product

Bimod(a, b)× Bimod(b, c)−→ Bimod(a, c) : ((S,M), (T, N)) 
−→ (S ◦ T,M ⊗b N).
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If we consider a further Z-graded category z and (R, P ) ∈ Bimod(z, a), then there are nat-

ural isomorphisms

((R ◦ S) ◦ T, (P ⊗a M)⊗b N)∼= (R ◦ (S ◦ T), P ⊗a (M ⊗b N)),

and (1U ◦ S,1a ⊗a M)∼= (S,M)∼= (S ◦ 1V ,M ⊗b 1b). These give rise to a bicategory Map of

map-graded categories, bimodules, and bimodule morphisms.

3.3 One-sided bimodules and Hom functors

Bimodules are the natural notion when working with graded categories, but some

bimodules can be considered to be more “one-sided” than others. Let U and V be cat-

egories with a U-V-bimodule S. Consider a U-graded category a and a V-graded category

b. Furthermore, consider the free U-graded category kU and the free V-graded category

kV as in Example 2.12. Then there are natural bimodule categories

ModS(a)= BimodS(a,kV)

and

ModS(b)= BimodS(kU , b).

Example 3.5. If we take, in the first case, V = e, then there is a unique U-e-bimodule S

with S(∗,U )= {∗} for every U ∈ U . Thus, we obtain the category of left a-modules

Modl
(a)= ModS(a).

Similarly, taking U = e there is a unique e-V-bifunctor S with S(V, ∗)= {∗} for every V ∈ V,

yielding the category of right b-modules

Modr
(b)= ModS(b). �

Now we return to the general situation of an underlying U-V-bimodule S. Then

fixing one argument in an a-b-bimodule M yields one-sided bimodules in the following

sense. Fix U ∈ U and A∈ aU . Then S yields an e-V-bimodule SU with

SU (V, ∗)= S(V,U ),
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and M yields a ke-b-bimodule MA ∈ BimodSU (ke, b) with

(MA)s(B, ∗)= Ms(B, A).

Furthermore, the categories BimodSU (ke, b) are connected in the following way. Consider

a morphism u: U −→ U ′ in U . Then there is an associated functor

u∗ : BimodSU ′ (ke, b)−→ BimodSU (ke, b) : M 
−→ u∗M,

with

(u∗M)s(B, ∗)= Mus(B, ∗).

Now we are ready to define the Hom functor

Homb : BimodS(a, b)× BimodS(a, b)−→ BimodU (a) : (M, N) 
−→ Homb(M, N),

where for u: U −→ U ′ in U and A∈ aU , A′ ∈ aU ′

Homb(M, N)u(A, A′)= BimodSU (ke, b)(MA,u
∗NA′).

There are natural morphisms

1a −→ Homb(M,M),

given by the natural action maps

au(A, A′)⊗ Ms(B, A)−→ Mus(B, A′).

In a similar way, we define

Homa
op : BimodS(a, b)× BimodS(a, b)−→ BimodV(b) : (M, N) 
−→ Homa

op (M, N).

Proposition 3.6. (1) The functor − ⊗a M : BimodU (a)−→ BimodS(a, b) is left adjoint to

Homb(M,−) : BimodS(a, b)−→ BimodU (a).

(2) The functor M ⊗b − : BimodV(b)−→ BimodS(a, b) is left adjoint to

Homa
op (M,−) : BimodS(a, b)−→ BimodV(b). �
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4 Functoriality of Map-Graded Hochschild Complexes

The Hochschild complex CU (a) of a map-graded category (U , a) is defined in analogy

with the Hochschild complex of an algebra [14], naturally making use of the simpli-

cial structure of the nerve N (a)=N (U �). In this section, we investigate the functoriality

properties of map-graded Hochschild complexes. A morphism of map-graded categories

is called sub-Cartesian if it is Cartesian with respect to Map −→ Mas. This amounts to

the fact that all maps occurring between Hom-modules are isomorphisms. For instance,

if we consider a fully faithful functor b −→ a between k-linear categories as a graded

functor between trivially graded categories, it is sub-Cartesian (Example 2.29). In Propo-

sition 4.2, we show that taking Hochschild complexes is functorial with respect to sub-

Cartesian functors. This constitutes a natural generalization of the limited functoriality

of Hochschild complexes of linear categories (see [12] in the differential graded context).

Let Mapsc ⊆ Map denote the full subcategory of sub-Cartesian morphisms. We endow

Mapsc with the pretopology of n-covers from Definition 2.30. In Theorem 4.7, we show

that the functor
Cn : Mapsc −→ Mod(k) : (U , a) 
−→ Cn

U (a)

is a sheaf. As an application of the theorem, in Section 4.5 we obtain a Mayer–Vietoris

sequence of Hochschild complexes

0 −→ CU (a)−→ CV1(a
ϕ1)⊕ CV2(a

ϕ2)−→ CV1∩V2(a
ϕ)−→ 0,

for a map-graded category (U , a) and two Cartesian morphisms (Vi, a
ϕi )−→ (U , a) and

(V1 ∩ V2, a
ϕ)−→ (U , a) associated to subcategories ϕi : Vi ⊆ U constituting an n-cover of

U for all n≥ 0. Finally, in Section 4.7, we discuss censoring subcategories as a natural

generalization of the censoring relations from [15, Section 4.3].

4.1 The map-graded Hochschild complex

Let a be a U-graded category. Let U � be the category defined in Example 2.13. Recall

from Section 2.4 that the nerve of a is defined to be the simplicial set N (a)=N (U �) with

n-simplices σ = (u, A) given by data

A0 A1 . . . An

U0
u0

�� U1
u1

�� . . .
un−1

�� Un
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with ui ∈ U , Ai ∈ aUi . For u∈N (U)n, we will use the notation

|u| = un−1 · · · u1u0.

A graded functor (ϕ, F ) : (V, b)−→ (U , a) induces a functor V� −→ U � and hence a map

N (F ) :N (b)−→N (a).
Let M be an a-bimodule. The Hochschild complex of a with values in M naturally

arises from this simplicial structure as the complex CU (a,M) with

Cn
U (a)=

∏
(u,A)∈N (a)

Homk(aun−1(An−1, An)⊗ · · · ⊗ au0(A0, A1),M|u|(A0, An)),

with the simplicial Hochschild differential. We put CU (a)= CU (a,1a). This complex is in

fact a B∞-algebra [14].

Example 4.1. Let a be a linear category. For all the U-gradings on a of Example 2.11,

the corresponding Hochschild complexes CU (a) are canonically isomorphic to C(a). This

results from the fact that all the nerves of these graded categories are canonically iso-

morphic to N (a). �

4.2 Limited functoriality

It is well known that the Hochschild complex of linear categories satisfies so-called

“limited functoriality” with respect to inclusions of full subcategories, see [12] for the

more general statement for differential graded categories. In this section, we discuss a

limited functoriality property for map-graded categories.

Recall that by Proposition 2.23, a graded functor (ϕ, F ) : (V, b)−→ (U , a) is sub-

Cartesian in the sense of Definition 2.27 provided that for every v : V −→ V ′ in V, B ∈ bV ,

B ′ ∈ bV ′ , the map

bv(B, B ′)−→ aϕ(v)(F (B), F (B ′))

is an isomorphism.

Proposition 4.2. Consider a graded functor (ϕ, F ) : (V, b)−→ (U , a). Let M be an a-

bimodule with induced b-bimodule F ∗M.
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(1) There is a canonical map

∏
(u,A)∈N (a)n

Homk(aun−1(An−1, An)⊗ · · · ⊗ au0(A0, A1),M|u|(A0, An))

(F ∗
M)

n

��

∏
(v,B)∈N (b)n

Homk(bvn−1(Bn−1, Bn)⊗ · · · ⊗ bv0(B0, B1), (F
∗M)|v|(B0, Bn)),

given by

(F ∗
M)

n((φ(u,A))(u,A))= (φ(ϕ(v),F (B)) ◦ F ⊗n)(v,B).

(2) The maps (F ∗
M)

n determine a morphism of complexes

F ∗
M : CU (a,M)−→ CV(b, F ∗M).

(3) If (ϕ, F ) is sub-Cartesian, we have F ∗1a
∼= 1b and the maps (F ∗

1a
)n determine

a morphism of B∞-algebras

F ∗ : CU (a)−→ CV(b),

with

(F ∗)n((φ(u,A))(u,A))= (F −1 ◦ φ(ϕ(v),F (B)) ◦ F ⊗n)(v,B). �

Clearly, graded categories with sub-Cartesian graded functors constitute a sub-

category Mapsc ⊆ Map. Let B∞ denote the category of B∞-algebras and morphisms. By

Proposition 4.2(3), we obtain a contravariant functor

C : Mapsc −→ B∞ : (U , a) 
−→ CU (a). (7)

Definition 4.3. Let (ϕ, F ) : (V, b)−→ (U , a) be a graded functor between graded cate-

gories (respectively, a graded map between graded sets). Let n∈ N ∪ {∞}.

(1) (ϕ, F ) is n-surjective if the canonical Nk(F ) : Nk(b)−→Nk(a) is surjective for

k≤ n.

(2) (ϕ, F ) is n-injective if Nk(F ) :Nk(b)−→Nk(a) is injective for k≤ n.

(3) (ϕ, F ) is injective if N1(ϕ) :N1(V)−→N1(U) is injective and every F : bV −→
aϕ(V) is injective. �
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Remark 4.4. (1) (ϕ, F ) is n-surjective if and only if the collection containing (ϕ, F ) as

single element is an n-cover in Map (respectively, Mas) in the sense of Definition 2.30.

(2) If (ϕ, F ) is 1-injective, then it is ∞-injective.

(3) If (ϕ, F ) is injective, then it is 1-injective.

(4) (ϕ, F ) is 1-injective if and only if (ϕ�, F �) defined as in Example 2.17 is injec-

tive. �

Proposition 4.5. Let (ϕ, F ) : (V, b)−→ (U , a) be a sub-Cartesian graded functor and let M

be an a-bimodule. Let n∈ N.

(1) If (ϕ, F ) is n-injective, then (F ∗)n : Cn
U (a,M)−→ Cn

V(b, F ∗M) is surjective.

(2) If (ϕ, F ) is n-surjective, then (F ∗)n : Cn
U (a,M)−→ Cn

V(b, F ∗M) is injective. �

Proof. (1) If Nn(F ) :Nn(b)−→Nn(a) is injective, the map (F ∗)n is isomorphic to a pro-

jection on a subproduct, whence surjective. (2) Looking at the prescription for (F ∗)n, if

φ ∈ Cn
U (a,M) is such that φ(ϕ(v),F (B)) = 0 for every (v, B) ∈Nn(b), then using n-surjectivity

we can write every (u, A) ∈N (a) as (u, A)= (ϕ(v), F (B)) for some (v, B) whence

φ(u,A) = 0. �

Example 4.6. Consider the graded functor (ϕ, F ) : (U �, a�)−→ (U , a) as in Example 2.17.

Clearly, (ϕ, F ) is sub-Cartesian and N (F ) : N (a�)=N ((U �)�)∼=N (U �)−→N (U �) is an iso-

morphism. Consequently, F ∗ : CU (a)∼= CU � (a�) is an isomorphism. �

4.3 The sheaf of Hochschild complexes

Consider the presheaf

C : Mapsc −→ B∞ : (U , a) 
−→ CU (a),

from (7). Let n∈ N ∪ {∞} be fixed. We endow Mapsc ⊆ Map with the pretopology of n-

covers, as described in Proposition 2.33.

Theorem 4.7. The presheaf Cn : Mapsc −→ Mod(k) : (U , a) 
−→ Cn
U (a) is a sheaf. If n= ∞,

then C : Mapsc −→ B∞ is a sheaf of B∞-algebras. �

Proof. Let ((ϕi, Fi) : (Vi, bi)−→ (U , a))i be an n-cover in Mapsc. A compatible family of

elements for this cover consists of n-cocycles

φi ∈ CVi (bi),
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such that for every pullback diagram

(Vi, bi)

(ϕi ,Fi)

�� (U , a)

(Vi ×U V j, bi ×a b j)

(α1,G1)

��

(α2,G2)

�� (V j, b j)

(ϕ j ,F j)

��

we have

G∗
i (φi)= G∗

j(φ j).

To define the unique glueing of this family on a, we must define for every (u, A) ∈Nn(a) a

corresponding cocycle

φ(u,A) ∈ Homk(aun−1(An−1, An)⊗ · · · ⊗ au0(A0, A1), a|u|(A0, An)).

Since the collection (Nn(Fi))i is jointly surjective, there in an i and (v, B) ∈Nn(bi) for

which ϕi(v)= u, Fi(B)= A. We thus have isomorphisms Fi : (bi)vi (Bi, Bi+1)−→ aui (Ai, Ai+1)

and Fi : (bi)|v|(B0, Bn)−→ a|u|(A0, An). We put

φ(u,A) = Fi ◦ φi (v,B) ◦ (F −1
i )⊗n.

It remains to show that this is well defined. Suppose that there is another j and

(w,C ) ∈Nn(b j) for which ϕ j(w)= u, F j(C )= A. We are to show that Fi ◦ φi (v,B) ◦ (F −1
i )⊗n =

F j ◦ φ j (w,C ) ◦ (F −1
j )⊗n. Now G∗

1 maps the collection φi to a collection ψi with

ψi ((v,w),(B,C )) = (G1)
−1 ◦ φi (v,B) ◦ (G1)

⊗n,

and G∗
2 maps the collection φ j to a collection ψ j with

ψ j ((v,w),(B,C )) = (G2)
−1 ◦ φ j (w,C ) ◦ (G2)

⊗n.

We thus have

Fi ◦ φi (v,B) ◦ (F −1
i )⊗n = (FiG1) ◦ ψi ((v,w),(B,C )) ◦ ((FiG1)

−1)⊗n

and

F j ◦ φ j (w,C ) ◦ (F −1
j )⊗n = (F jG2) ◦ ψ j ((v,w),(B,C )) ◦ ((F jG2)

−1)⊗n.
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By the commutativity of the pullback square and the compatibility assumption ψi =ψ j,

these two expressions are equal as desired. �

Let a be a U-graded category with underlying graded set x. There are natural

functors

Φ1 : Mas/x −→ Map : ((ϕ, F ) : (V, y)→ (U , x)) 
−→ a(ϕ,F )

and

Φ2 : Cat/U −→ Map : (ϕ : V → U) 
−→ aϕ.

Let n∈ N ∪ ∞. Endow Mas/x and Cat/U with the pretopologies of n-covers

induced from the ones on Mas and Cat, and also endow Map with the pretopology of

n-covers.

Proposition 4.8. The functors Φ1 and Φ2 both map covers to covers. �

Corollary 4.9. The presheaves

Cn
1 = Cn ◦Φ1 : Mas/x −→ Mod(k) : ((ϕ, F ) : (V, y)→ (U , x)) 
−→ Cn

V(a
(ϕ,F ))

and

Cn
2 = Cn ◦Φ2 : Cat/U −→ Mod(k) : (ϕ : V → U) 
−→ Cn

V(a
ϕ)

are sheaves. �

We end this section by noting that for a fixed a-bimodule M, one similarly has

the following proposition.

Proposition 4.10. There are natural sheaves

Cn
1,M : Mas/x −→ Mod(k) : ((ϕ, F ) : (V, y)→ (U , x)) 
−→ Cn

V(a
(ϕ,F ), F ∗M)

and

Cn
2,M = Cn ◦Φ2 : Cat/U −→ Mod(k) : (ϕ : V → U) 
−→ Cn

V(a
ϕ,Mϕ). �

Remark 4.11. It is possible to formulate a version of Theorem 4.7 taking map-graded

categories endowed with a bimodule as input data for C, such that Proposition 4.10 is

obtained as a corollary. The details are left to the reader. �
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4.4 ∞-Surjections

Let (ϕ, F ) : (V, b)−→ (U , a) be an ∞-surjective morphism in Mapsc. To formulate the sheaf

property of Cn for the corresponding ∞-cover, we look at the pullback

(V, b)
(ϕ,F )

�� (U , a)

(V ×U V, b ×a b)

(α1,G1)

��

(α2,G2)

�� (V, b)

(ϕ,F )

��

According to Theorem 4.7, we obtain an exact sequence of B∞-algebras

0 �� CU (a)
F ∗

�� CV(b)
G∗

2−G∗
1

�� CV×UV(b ×a b).

Define the complex

CV/U (b/a)= Im(G∗
2 − G∗

1).

Then we obtain a long exact cohomology sequence

. . . �� H Hi
U (a)

F ∗
�� H Hi

V(b)
G∗

2−G∗
1

�� H Hi
V/U (b/a) �� . . . .

4.5 Mayer–Vietoris sequences

Let a be a U-graded category. Consider two sub-Cartesian 1-injections (ϕ1, F1) :

(V1, b1)−→ (U , a) and (ϕ2, F2) : (V2, b2)−→ (U , a) that together constitute an ∞-cover of a.

It is our aim to formulate the sheaf property, so we have to look at all possible pullbacks

between (ϕ1, F1) and (ϕ2, F2). For i ∈ {1,2}, we first look at the pullback

(Vi, bi)

(ϕi ,Fi)

�� (U , a)

(Vi ×U Vi, bi ×a bi)

(α1,G1)

��

(α2,G2)

�� (Vi, bi)

(ϕi ,Fi)

��
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The functor (−)� from Example 2.17 maps this pullback to the pullback of (ϕ�i , F �

i ) :

(V�i , b
�

i )−→ (U �, a�) with itself. Now (ϕ
�

i , F �

i ) is an injection by Remark 4.4(4), whence it

is easily seen to be a monomorphism in Map. Thus, the pullback of this morphism with

itself is given by identity morphisms, inducing identity morphisms between Hochschild

complexes. Using Example 4.6, we conclude that an element φ ∈ CVi (bi) satisfies

G∗
1(φ)= G∗

2(φ) ∈ CVi×UVi (bi ×a bi).

It thus remains to look at the pullback

(V1, b1)

(ϕ1,F1)

�� (U , a)

(V1 ×U V2, b1 ×a b2)

(α1,G1)

��

(α2,G2)

�� (V2, b2)

(ϕ2,F2)

��

from which we obtain an exact sequence of complexes:

0 �� CU (a) ⎛
⎜⎝F ∗

1

F ∗
2

⎞
⎟⎠

�� CV1(b1)⊕ CV2(b2)(
−G∗

1 G∗
2

)�� CV1×UV2(b1 ×a b2) �� 0

Here, the sequence is left exact by the sheaf property Theorem 4.7 and moreover right

exact by Proposition 4.5(2). We thus obtain a long exact cohomology sequence

. . . �� H Hi
U (a) ⎛

⎜⎝F ∗
1

F ∗
2

⎞
⎟⎠

�� H Hi
V1
(b1)⊕ H Hi

V2
(b2)(

−G∗
1 G∗

2

)�� H Hi
V1×UV2

(b1 ×a b2) �� . . .

Example 4.12. Let a be a U-graded category and let ϕ1 : V1 ⊆ U and ϕ2 : V2 ⊆ U be sub-

categories that together constitute an ∞-cover of U in Cat. Then the induced Carte-

sian morphisms (V1, a
ϕ1)−→ (U , a) and (V2, a

ϕ2)−→ (U , a) in Map constitute an ∞-cover

by 1-injections. Put ϕ : V1 ∩ V2 ⊆ U the inclusion. By Example 2.19, we obtain an exact
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sequence of complexes

0 �� CU (a) ⎛
⎜⎝ϕ

∗
1

ϕ∗
2

⎞
⎟⎠

�� CV1(a
ϕ1)⊕ CV2(a

ϕ2)(
−α∗

1 α∗
2

)�� CV1∩V2(a
ϕ) �� 0

Based upon Proposition 4.10, one obtains a version of this sequence involving bimod-

ules. �

Example 4.13. Let (X,O) be a ringed space with an acyclic basis B of open sets, that

is, Hi(U,OU )= 0 for i > 0 and U ∈B (see [15]). Consider open sets U0,U1, and U2 with

U0 = U1 ∪ U2 and put U12 = U1 ∩ U2. Put

B� = {B ∈B | B ⊆ U�},

for �= 1,2,12. Then B� is an acyclic basis for U� and B12 =B1 ∩ B2. Further, B0 =B1 ∪ B2

is an acyclic basis for U0 (which is smaller that the basis U0 immediately inherits form

B). Now consider all the posets (B�,⊆) as small categories. Then we have a cover of B0

consisting of the injections ϕi :Bi −→B0 for i = 1,2 and we have B12 =B1 ∩ B2 as cate-

gories. On each of these categories, we consider the corresponding B�-graded category

b� with (b�)V = {V} and

b�(W,V)=O(W),

for W ⊆ V , that is, b� is the map-graded category associated to the restricted structure

sheaf on B�. Clearly, b1 = (b0)
ϕ1 and similarly for the other injections. According to [15],

CB�
(b�) computes the Hochschild cohomology of the ringed space (U�,O|U�

). From the

above, we obtain an exact sequence

0 �� CB0(b0) �� CB1(b1)⊕ CB2(b2) �� CB12(b12) �� 0,

and an induced long exact cohomology sequence

. . . �� H Hi(U0)
�� H Hi(U1)⊕ H Hi(U2)

�� H Hi(U12)
�� . . . .

The more subtle problem of defining a sheaf of Hochschild complexes on quasi-compact

opens of a quasi-compact separated scheme was solved in [13]. The existence of Mayer–

Vietoris sequences for arbitrary ringed spaces was shown in [15, Section 7.9] making use
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of the definition of the Hochschild complex of X as the Hochschild complex of the linear

category of injectives in the category of sheaves Mod(X). We come back to this approach

in Example 6.16. �

4.6 1-Injections

Let (ϕ, F ) : (V, b)−→ (U , a) be a 1-injective sub-Cartesian graded functor and let M be an

a-bimodule. We thus have injections Nn(ϕ
�) : Nn(V�)−→Nn(U �) for all n∈ N. By Proposi-

tion 4.5, we obtain a surjective morphism

F ∗ : CU (a,M)−→ CV(b, F ∗M).

Define the complex

CU\V� (a,M)= Ker(F ∗).

Then Cn
U\V� (a,M) is isomorphic to

∏
(u,A)/∈Im(Nn(ϕ�))

Homk(aun−1(An−1, An)⊗ · · · ⊗ au0(A0, A1),M|u|(A0, An)). (8)

Proposition 4.14. The following are equivalent:

(1) (u, A) ∈ Im(Nn(ϕ
�)).

(2) For every ui : Ai −→ Ai+1 in N1(U �) occurring in (u, A), we have ui ∈ Im(N1(ϕ
�)).�

Proof. Suppose that (2) holds. Let ui = ϕ�(v) : Ai −→ Ai+1 for v : B −→ B ′ in N1(V�) and let

ui+1 = ϕ�(w) : Ai+1 −→ Ai+2 for w : C −→ C ′ in N1(V�). Then ϕ�(1B ′)= 1Ai+1 = ϕ�(1C ) whence

B ′ = C . �

We call CU\V� (a,M) the Hochschild complex of a with support outside V� (and

values in M). We thus obtain an exact sequence of complexes

0 −→ CU\V� (a,M)−→ CU (a,M)−→ CV(b, F ∗M)−→ 0, (9)

and a long exact cohomology sequence

. . . �� H Hi
U\V� (a,M) �� H Hi

U (a,M)
F ∗

�� H Hi(b, F ∗M) �� . . . .
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Example 4.15. Let a be a U-graded category and ϕ : V ⊆ U be a subcategory. Consider

the Cartesian morphism δϕ,a : aϕ −→ a. Then (ϕ, δϕ,a) : (V, aϕ)−→ (U , a) is injective whence

1-injective. In this case, the following are equivalent:

(1) (u, A) ∈ Im(Nn(ϕ
�)).

(2) For every ui : Ui −→ Ui+1 in N1(U) occurring in u, we have u∈ Im(N1(ϕ)).

Consequently, we will denote CU\V(a,M)= CU\V� (a,M) and call this complex the

Hochschild complex of a with support outside V. �

4.7 Censoring subcategories

Let a be a U-graded category. A subcategory V ⊆ U is called censoring if for all u: U −→
U ′, A∈ aU , A′ ∈ aU ′ with u /∈ V, we have au(A, A′)= 0. The terminology is taken from [15,

Section 4.3], cf. the following example.

Example 4.16. Let a be a linear category and let R be a transitive relation on Ob(a).

In [15], the relation R is called censoring if a(B, A)= 0 for (B, A) /∈R. Clearly, this yields

a special case of a censoring subcategory UR of the standard grading category U of a.

Precisely, we let UR be the category with Ob(UR)= Ob(a) and

UR(B, A)=
⎧⎨
⎩∗ if (B, A) ∈R,

∅ otherwise. �

A 1-injection (ϕ, F ) : (V, y)−→ (U , a) of graded sets is called censoring if for all u:

A−→ A′ in U � which is not in the image of N1(F ) : N1(y)−→N1(a), we have au(A, A′)= 0.

Remark 4.17. (1) A subcategory ϕ : V ⊆ U is censoring if and only if the Cartesian map

(ϕ, δϕ,a) : (V, aϕ)−→ (U , a) is a censoring 1-injection.

(2) A 1-injection (ϕ, F ) : (V, y)−→ (U , a) is censoring if and only if ϕ� : V� −→ U �

defines a censoring subcategory for the graded category (U �, a�). �

Proposition 4.18. Let a be a U-graded category and let M be an a-bimodule.

(1) Let ϕ : V ⊆ U be a censoring subcategory. Then the map

ϕ∗ : CU (a,M)−→ CV(aϕ,Mϕ)

is an isomorphism of complexes.
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(2) Let (ϕ, F ) : (V, b)−→ (U , a) be a sub-Cartesian, censoring 1-injection. Then the

map

F ∗ : CU (a,M)−→ CV(b, F ∗M)

is an isomorphism of complexes. �

Proof. By the higher remarks, it suffices to prove either one of (1), (2). Let us prove (2).

By the assumption, every component

Homk(aun−1(An−1, An)⊗ · · · ⊗ au0(A0, A1),M|u|(A0, An))

in (8) contains some ui : Ai −→ Ai+1 not contained in Im(N1(ϕ
�)), which thus has

aui (Ai, Ai+1)= 0. Consequently, CU\V� (a,M)= 0. �

Proposition 4.18 has a useful corollary, which says that a censoring subcategory

essentially censors possible uncontrollable parts of bimodules. This was precisely the

original intuition behind the terminology in [15].

Corollary 4.19. Let a be a U-graded category and let V ⊆ U be a censoring subcategory.

Let

f : M −→ N

be a morphism of a-bimodules. If

fϕ : Mϕ −→ Nϕ

is a quasi-isomorphism, then so is

CU (a, f) : CU (a,M)−→ CU (a, N). �

5 Hochschild Cohomology with Support

Let a be a U-graded category, ϕ : V ⊆ U be a subcategory, and (V, b)−→ (U , a) be a Carte-

sian functor. In this section, we investigate some cases where the cohomology of the

complex CU\V(a,M) (see Example 4.15) has a nice cohomological interpretation. The

main point is that we need some control over the “complement” of V in U . Precisely,

we assume that this complement (the U-morphisms not in V) constitutes an ideal Z in
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U . In this case, we show in Proposition 5.3 that

CU\V(a,M)∼= CU (a,MZ),

where MZ is the natural restriction of M to an a-bimodule supported on Z (i.e., with

zero values outside of Z). Our setup applies in the situation where U is the category

associated to a collection of open subsets of a topological space X ordered by inclusion,

V is the full subcategory of subsets U ⊆ V for a fixed subset V , and Z contains the

inclusions U ′ ⊆ U with U � V .

In Section 5.7, we revisit the arrow category construction from [12] in the

map-graded context. For an (U , a)-(V, b)-bimodule (S,M), we take the natural inclusion

V
∐

U −→ (V →S U) and corresponding Cartesian functor

(
V
∐

U , b
∐

a
)

−→ (V →S U , b →M a),

as starting point for obtaining map-graded analogs of some of the main results from [12].

Sections 5.9 and 5.10 are entirely modeled upon the treatment in [12], and mainly for-

mulate results from [12] in the map-graded context, making use of the natural Hom and

tensor functors from Section 3.2. Further, in Section 5.8, we give an intrinsic character-

ization of arrow categories based upon the thin ideals introduced in Section 5.6.

5.1 Ideals in categories

Let U be an arbitrary category. Recall from Section 3.1 that a U-bifunctor S consists of

sets S(V,U ) for U,V ∈ U and actions

U(U,U ′)× S(V,U )× U(V ′,V)−→ S(V ′,U ′).

Denote the category of U-bimodules by Bimod(U). A (two sided) ideal in U is a subfunctor

Z ⊆ 1U

of the identity bifunctor in the category Bifun(U) of U-bifunctors. More precisely, it

consists of subsets Z(V,U )⊆ U(V,U ) for all U,V ∈ U such that the composition of U
restricts to

U(U,U ′)× Z(V,U )× U(V ′,V)−→Z(V ′,U ′).

We put the morphisms in Z equal to Mor(Z)=∐
V,U Z(V,U ).
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5.2 Bimodules over ideals

Let a be a U-graded category and let Z be an ideal in U . An a-bimodule M on Z consists

of:

(1) k-modules Mz(B, A) for all z : V −→ U in Z and A∈ aU , B ∈ aV ;

(2) actions au(A, A′)⊗ Mz(B, A)⊗ av(B ′, B)−→ Muzv(B ′, A′) for all additional u:

U −→ U ′, v : V ′ −→ V in U and A′ ∈ aU ′ , B ′ ∈ aV ′ ;

with the natural axioms. The a-bimodules on Z form an abelian category BimodZ(a).

There are obvious exact functors

(−)|U : BimodZ(a)−→ BimodU (a) : M 
−→ M|U ,

where M|U is the extension of M by zero values outside of Z, and

(−)|Z : BimodU (a)−→ BimodZ(a) : M 
−→ M|Z ,

where M|Z is the restriction of M to Z. Clearly, (−)|Z is right adjoint to (−)|U ,

(−)|Z(−)|U = 1BimodZ (a),

and the canonical
(−)Z = (−)|U (−)|Z −→ 1BimodU (a)

corresponds to inclusions of a-modules

MZ ⊆ M,

where MZ is obtained by changing the values of M to zero outside of Z. We can thus

identify BimodZ(a) with the full subcategory of BimodU (a) of bimodules supported on Z.

5.3 Ideal-subcategory decomposition

We now turn to our main situation of interest, which is summarized as follows:

(1) U is an arbitrary category;

(2) V ⊆ U is a subcategory;

(3) Z ⊆ 1U is an ideal;

(4) Mor(U)= Mor(V)
∐

Mor(Z).

In this case, we call (Z,V) an ideal-subcategory decomposition of U .
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Remark 5.1. Note that the datum of an ideal-subcategory decomposition (Z,V) of U
is in one-to-one correspondence with the datum of an ideal Z ⊆ 1U which is completely

prime, that is, zz′ ∈Z implies z∈Z or z′ ∈Z. Indeed, to recover V from Z it suffices to

put Ob(V)= {U ∈ U | 1U /∈Z} and Mor(V)= Mor(U) \ Mor(Z). �

Example 5.2. Let X be a topological space, V be an open subset and Z = X \ V be its

closed complement. Let U ⊆ open(X) be a subposet of the open sets of X. Let V ⊆ U be

the full subcategory with

Ob(V)= {U ∈ U |U ⊆ V},

and Z ⊆ 1U the ideal with u: U −→ U ′ in Z if and only if U ′ � V . Clearly, (Z,V) is an

ideal-subcategory decomposition of U . �

5.4 The localization sequence of bimodule categories

Let a be a U-graded category and (Z,V) be an ideal-subcategory decomposition of U . Put

b = a|V . In this section, we take a closer look at the sequence

BimodZ(a)
(−)|U(Z)

�� BimodU (a)
(−)|V

�� BimodV(b).

Clearly, BimodZ(a) is the kernel of (−)|V , and we already know from Section 5.2 that

(−)|U(Z) has a right adjoint (−)|Z . Since (−)|V is induced by an underlying k-linear functor

b ⊗V b −→ a ⊗U a, both adjoints of (−)|V exist and can be described explicitly. Moreover,

since Z is an ideal, the right adjoint has a particularly easy description. Define the

functor

(−)|U(V) : BimodV(b)−→ BimodU (a) : M 
−→ M|U ,

in the following way. Put

(M|U )u(B, A)=
⎧⎨
⎩Mu(B, A) if u∈ V,

0 otherwise.

Then there is a unique way to let a act on M|U so that

au′(A, A′)⊗ (M|U )u(B, A)⊗ au′′(B ′, B)−→ (M|U )u′uu′′(B ′, A′)

 by guest on June 5, 2014
http://im

rn.oxfordjournals.org/
D

ow
nloaded from

 

http://imrn.oxfordjournals.org/


Hochschild Cohomology with Support 43

is given by the action of b on M if u, u′, u′′ are in V, and is zero otherwise. This is a well-

defined action thanks to the fact that Z is an ideal. The functor (−)|U(V) is right adjoint to

(−)|V and we have

(−)|V(−)|U(V) = 1BimodV (b).

The canonical

1BimodU (a) −→ (−)|U(V)(−)|V = (−)V

corresponds to quotients of a-bimodules

M −→ MV ,

where MV is obtained from M by changing the values of M outside V to zero.

Summarizing, we have an exact sequence of functors

0 −→ (−)Z −→ 1BimodU (a) −→ (−)V −→ 0,

corresponding to exact sequences of bimodules

0 −→ MZ −→ M −→ MV −→ 0. (10)

5.5 The localization sequence for Hochschild cohomology

We can now use (10) to obtain the following short exact sequence of Hochschild com-

plexes:

0 −→ CU (a,MZ)−→ CU (a,M)−→ CU (a,MV)−→ 0. (11)

Proposition 5.3. The sequences (9) and (11) are canonically isomorphic. �

Proof. This follows from the fact that (Z,V) is an ideal-subcategory decomposition of

U . Indeed, let us first compare CU (a,MV) to CV(b,M|V). In every product

∏
(u,A)∈N (a)

Homk(aun−1(An−1, An)⊗ · · · ⊗ au0(A0, A1), (MV)|u|(A0, An)),

turning up in Cn
U (a,MV) we may clearly remove the pieces with |u| ∈Z since then

(MV)|u|(A0, An)= 0. But since Z is an ideal and V a subcategory, the remaining pieces
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are precisely the ones with all the ui ∈ V, and we recover CV(b,M|V). Similarly, consider

a product

∏
(u,A)∈N (a)

Homk(aun−1(An−1, An)⊗ · · · ⊗ au0(A0, A1), (MZ)|u|(A0, An))

in Cn
U (a,MZ). This time, all the pieces with |u| ∈ V can be removed. What remains

are the pieces in which at least one ui belongs to Z, which corresponds precisely to

CU\V(a,M). �

In fact, the isomorphism CU (a,MV)∼= CV(b,M|V) is easily understood on the

derived level. Indeed, the localization between BimodU (a) and BimodV(b) of Section 5.4

yields:

RHomBimodU (a)(1a, (M|V)|U )∼= RHomBimodV (b)(1b,M|V).

The more mysterious part in the isomorphic sequences (9) and (11) remains the

Hochschild complex with support

CU\V(a,M)∼= CU (a,MZ),

but at least it now has an interpretation as an ordinary Hochschild complex of a with

values in the bimodule MZ supported on Z. So far, the most meaningful incarnation of

the sequences (9) and (11) is perhaps

0 −→ CU (a,MZ)−→ CU (a,M)−→ CV(b,M|V)−→ 0. (12)

5.6 Thin ideals

Consider ϕ : V ⊆ U with Ob(V)= Ob(U) and let (Z,V) be an ideal-subcategory decompo-

sition of U . Let b be a V-graded category. We define a b-bimodule on Z to consist of the

following data:

(1) for all z : V −→ U in Z and B ∈ bV , A∈ bU , a k-module Mz(B, A);

(2) actions bv(A, A′)⊗ Mz(B, A)⊗ bv′(B ′B)−→ Mvzv′(B ′, A′) for all additional v :

U −→ U ′, v′ : V ′ −→ V in V and A′ ∈ bU ′ , B ′ ∈ bV ′ .

We thus obtain the abelian category BimodZ(b) of b-bimodules on Z.
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Now consider a U-graded category a and suppose b = a|V . There is a functor

(−)|a : BimodZ(b)−→ BimodZ(a) : M 
−→ M|a,

where the actions az′(A, A′)⊗ Mz(B, A)−→ Mz′z(B, A′) and Mz(B, A)⊗ az′′(B ′, B)−→
Mzz′′(B ′, A) are zero for z, z′, and z′′ in Z. This yields a well-defined action since Z is

an ideal. Obviously, there is also a functor

(−)|b : BimodZ(a)−→ BimodZ(b) : M 
−→ M|b,

which restricts the action to b. Clearly,

(−)|b(−)|a = 1BimodZ (b).

Definition 5.4. (1) An ideal Z ⊆ 1U is called thin if it contains no consecutive mor-

phisms, that is, if we consider z∈Z(V,U ), u′ ∈ U(V ′,V), u∈ U(U,U ′), then it follows that

u′ /∈Z and u /∈Z.

(2) An a-bimodule M on Z is called Z-thin if it receives no nontrivial

actions from Z, that is, if we have z∈Z(V,U ), z′ ∈Z(V ′,V), z′′ ∈Z(U,U ′),

then it follows that both az′′(A, A′)⊗ Mz(B, A)−→ Mz′′z(B, A′) and Mz(B, A)⊗
az′(B ′, B)−→ Mzz′(B ′, A) are zero for all A, A′, B, B ′. �

Example 5.5. Let U be a category and Ob1 ⊆ Ob(U) and Ob2 ⊆ Ob(U) be two classes of

objects with no morphisms going from Ob2 to Ob1. Then the U-morphisms starting in

Ob1 and landing in Ob2 form a thin ideal in U . �

Obviously, if Z is thin, then every M-bimodule on Z is Z-thin. In general, we

make the following easy observations.

Proposition 5.6. For an a-bimodule M on Z, the following are equivalent:

(1) M is Z-thin;

(2) M ∼= (M|b)|a;

(3) M is in the image of (−)|a. �

Corollary 5.7. If Z is thin, then (−)|a and (−)|b constitute inverse isomorphisms

BimodZ(b)∼= BimodZ(a). �
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5.7 Arrow categories

In this section, we introduce the arrow category construction from [12] in the map-

graded setting. Let a be a U-graded category, b be a V-graded category, S be a U-V-

bifunctor, and M be an a-S-b-bimodule. To these data, we associate the arrow category

b →M a which is a V →S U graded category. Here, W = V →S U is the underlying arrow

category with

Ob(W)= Ob(V)
∐

Ob(U)

and

W(V ′,V)= V(V ′,V), W(U,U ′)= U(U,U ′),

W(V,U )= S(V,U ), W(U,V)= ∅,

for U,U ′ ∈ U and V,V ′ ∈ V. Similarly, c = b →M a is the W-graded category with

Ob(c)= Ob(a)
∐

Ob(b)

and

cv(B
′, B)= bv(B

′, B), cu(A, A′)= au(A, A′),

cs(B, A)= Ms(B, A),

for v : V ′ −→ V in V, B ′ ∈ bV ′ , B ∈ bV , u: U −→ U ′ in U , A∈ aU , A′ ∈ aU ′ .

Remark 5.8. Even when a and b are linear categories with standard grading, and M is

an ordinary a-b-bimodule, the resulting arrow category b →M a is naturally graded in a

nonstandard way since there are no morphisms going from a to b. �

Consider the natural inclusions ϕU : U −→W, ϕV : V −→W, and

ϕU∐V : U
∐

V −→W. Clearly, we have cϕU = a, cϕV = b, and cϕU
∐V = a

∐
b and we obtain

the induced surjections

ϕ∗
U : CW(c)−→ CU (a),

ϕ∗
V : CW(c)−→ CV(b),
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and

ϕ∗
U∐V ∼=

(
ϕ∗
V
ϕ∗
U

)
: CW(c)−→ CU∐V

(
a
∐

b
)∼= CV(b)⊕ CU (a).

Further, S defines a thin ideal S in W with

S(V,U )=
⎧⎨
⎩S(V,U ) if U ∈ U ,V ∈ V,

∅ else,

and (S,U
∐

V) is an ideal-subcategory decomposition in W. For the category of b
∐

a-

bimodules on S in the sense of Section 5.6, we clearly have an isomorphism of categories

BimodS(b
∐

a)∼= BimodS(b, a),

and hence, by Corollary 5.7, an isomorphism of categories

BimodS(b, a)∼= BimodS(c). (13)

5.8 Arrow categories and thin ideals

In this section, we characterize the situation that occurs from the arrow category con-

struction. Let c be a W-graded category and let S be a thin ideal in W. We define the full

subcategories ϕU : U ⊆W and ϕV : V ⊆W in the following way. An object W ∈W belongs

to V if there exists a path

W −→ W1 −→ · · · −→ Wn −→ Wn+1,

for which the last map Wn −→ Wn+1 belongs to S. Similarly, W belongs to U if there exists

a path

W1 −→ W2 −→ · · · −→ W,

for which W1 −→ W2 belongs to S. We put a = cϕU and b = cϕV . Let S denote the restriction

of S to a U-V-bifunctor, and let M be the restriction of 1c to an a-b-bimodule.
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Proposition 5.9. For U ∈ U and V ∈ V, we have W(U,V)= ∅. In particular, the categories

U and V are disjoint, and there is an injection ϕ : (V →S U)−→W for which

(b →M a)= cϕ.

The following are equivalent:

(1) ϕ is an isomorphism;

(2) we have Ob(W)= Ob(V) ∪ Ob(U) and S(V,U )=W(V,U ) for V ∈ V and U ∈ U .

In this case, we have (b →M a)= c. �

Proof. Suppose that there is a morphism U −→ V with U ∈ U and V ∈ V. Then there is a

path

W1 −→ W2 −→ · · · −→ U −→ V −→ · · · −→ Wn −→ Wn+1,

with the two morphisms at the ends belonging to S. But then since S is an ideal, also

W2 −→ · · · −→ Wn+1 belongs to S. With W1 −→ W2 in S, this contradicts the thinness of S.

The functor ϕ is clearly injective on objects and on morphisms in U or V, and

since S(V,U )⊆W(V,U ), the functor is indeed injective. The description of cϕ clearly

follows.

It remains to show the equivalence of (1) and (2). Condition (2) is clearly neces-

sary for ϕ to be surjective. Conversely, surjectivity readily follows from (2) taking into

account that for U ∈ U and V ∈ V, we have W(U,V)= ∅. �

Recall that a delta is a category in which the arrows go only one way, that is, we

have the following definition.

Definition 5.10. A delta is a category W such that for all W �= W′ ∈W, we have

W(W,W′)= ∅ or W(W′,W)= ∅. �

Example 5.11. Let W be a delta with a terminal object ∗ ∈W. For W ∈W, let ∗W : W −→ ∗
denote the unique morphism. Let S consist of all morphisms ∗W : W −→ ∗ for W �= ∗. Since

W is a delta and ∗ is terminal, for all W �= ∗ we have W(∗,W)= ∅ and we have W(∗, ∗)=
{1∗} = {∗∗}. Then S is a thin ideal by Example 5.5. In the above notation, U consists of

∗ and V consists of all other objects. Then condition (2) in Proposition 5.9 is fulfilled

whence W ∼= (V →S U). �
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5.9 Connecting homomorphism

In the notation of Section 5.7, we now investigate the complex

CW(c, (1c)S),

which fits into the following exact sequence from (12):

0 �� CW(c, (1c)S) �� CW(c) ⎛
⎜⎝ϕ

∗
V
ϕ∗
U

⎞
⎟⎠

�� CV(b)⊕ CU (a) �� 0

Since we are interested in identifying when ϕ∗
V and ϕ∗

U are quasi-isomorphisms, we will

describe the components of the connecting homomorphism explicitly. In fact, this mor-

phism is determined by two maps on the chain level which we will describe next:

α : CU (a)−→ CW(c, (1c)S)[1]

and

β : CV(b)−→ CW(c, (1c)S)[1].

To do this, we first make CW(c, (1c)S) explicit. By definition, Cn
W(c, (1c)S) is given by

∏
(u,A)∈N (c)∃ui∈S

Homk(bun−1(An−1, An)⊗ · · · ⊗ Mui (Ai, Ai+1) · · · ⊗ au0(A0, A1),M|u|(A0, An)).

Let φ ∈ Cn
U (a) be a Hochschild cocycle. Following [12], we define α(φ) with nonzero com-

ponents in

Homk(Mun(An, An+1) · · · ⊗ au0(A0, A1),M|u|(A0, An+1)),

given by

α(φ)(x,an−1, . . . ,a0)= xφ(an−1, . . . ,a0),

and similarly for β.

Lemma 5.12. The maps α and β are chain maps for which

(
β α

)
: CV(b)⊕ CU (a)−→ CW(c, (1c)S)[1],

induces the connecting homomorphisms. �
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The triangle

CW(c) ⎛
⎜⎝ϕ

∗
V
ϕ∗
U

⎞
⎟⎠

�� CV(b)⊕ CU (a) (
β α

)�� CW(c, (1c)S)[1] �� (14)

corresponds to a homotopy bi-Cartesian square

CW(c)

ϕ∗
V

��

ϕ∗
U

�� CU (a)

α

��

CV(b)
β

�� CW(c, (1c)S)[1]

We thus have the following proposition.

Proposition 5.13. (1) If α is a quasi-isomorphism, then so is ϕ∗
V .

(2) If β is a quasi-isomorphism, then so is ϕ∗
U . �

5.10 Derived interpretation

Following [12], we now give a derived interpretation of the morphisms α and β. We start

by giving various derived interpretations of CW(c, (1c)S.

Let B(a)−→ 1a and B(b)−→ 1b be the Bar resolutions in BimodU (a) and

BimodV(b), respectively, as defined in [14, Section 3.2]. We have

CU (a)∼= HomBimodU (a)(B(a),1a)= RHomBimodU (a)(1a,1a)

and

CV(b)∼= HomBimodV (b)(B(b),1b)= RHomBimodV (b)(1b,1b).

Similarly, we have

CW(c, (1c)S)[1] ∼= HomBimodS(a,b)(B(a)⊗a M ⊗b B(b),M)

and

HomBimodS(a,b)(B(a)⊗a M ⊗b B(b),M)= RHomBimodS (a,b)(M,M).
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In particular, from the triangle (14) we obtain a long exact cohomology sequence

· · · −→ H Hi
W(c)−→ H Hi

V(b)⊕ H Hi
U (a)−→ Exti

BimodS(b,a)
(M,M)−→ · · · .

By Proposition 3.6, we further have

CW(c, (1c)S)[1] ∼= HomBimodU (a)(B(a),Homb(M ⊗b B(b),M)),

with Homb(M ⊗b B(b),M)= RHomb(M,M). Similarly,

CW(c, (1c)S)[1] ∼= HomBimodV (b)(B(b),Homa
op (B(a)⊗a M,M)),

with Homa
op (B(a)⊗a M,M)= RHoma

op (M,M).

Consider the natural morphisms

λ : 1a −→ Homb(M,M)−→ RHomb(M,M)

and

ω : 1b −→ Homa
op (M,M)−→ RHoma

op (M,M)

of bimodules and the induced

CU (a, λ) : CU (a)−→ CU (a,RHomb(M,M))

and

CV(b, ω) : CV(b)−→ CV(b,RHoma(M,M)).

We have the following map-graded version theorem [15, Theorem 4.1.1] extracted

from [12, Section 4].

Theorem 5.14.

(1) We have α∼= CU (a, λ) and β ∼= CV(b, ω).

(2) If CU (a, λ) is a quasi-isomorphism (hence, in particular, if λ is a quasi-

isomorphism), then so is ϕ∗
V .

(3) If CV(b, ω) is a quasi-isomorphism (hence, in particular, if ω is a quasi-

isomorphism), then so is ϕ∗
U . �
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The analog of [12, Section 4.6, Theorem] in the map-graded context can be for-

mulated and proved in a similar fashion. In particular, we mention the following com-

patibility results explicitly.

Let (ϕ, F ) : (U , a)−→ (V, b) be a sub-Cartesian graded functor with associated U-

V-bifunctor Sϕ and a-Sϕ-b-bimodule MF as in Example 3.2. On the one hand, since (ϕ, F )

is sub-Cartesian, we have the induced morphism of B∞-algebras

F ∗ : CV(b)−→ CU (a),

from Proposition 4.2.

Proposition 5.15. (1) λ : 1a −→ RHomb(MF ,MF ) and hence ϕ∗
V is a quasi-isomorphism.

(2) In the homotopy category of B∞-algebras, we have F ∗ = ϕ∗
Uϕ

∗
V

−1. �

Let (ϕ, F ) : (V, b)−→ (U , a) be a sub-Cartesian graded functor with associated

U-V-bifunctor Sϕ and a-Sϕ-b-bimodule MF as in Example 3.2. This time we have the

functor

F ∗ : CU (a)−→ CV(b).

Proposition 5.16. (1) ω : 1b −→ RHoma
op (MF ,MF ) and hence ϕ∗

U is a quasi-

isomorphism.

(2) In the homotopy category of B∞-algebras, we have F ∗ = ϕ∗
Vϕ

∗
U

−1. �

6 Grothendieck Construction

In this section, we present a unified framework for constructing map-graded categories

and deconstructing their Hochschild complexes. The classical Grothendieck construc-

tion from [1] takes a pseudofunctor U −→ Cat as input and turns it into a category fibered

over U . The main construction from [14] is a k-linearized version of this construction.

Now, we go a step further and start from a pseudofunctor

(U , a) : C −→ Map : C 
−→ (UC , aC ),

where C is a small category and Map is the bicategory of map-graded categories and

bimodules described in Section 3.2. Allowing arbitrary bimodules rather than functors

between map-graded categories allows us to capture the arrow category with respect to
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a bimodule from Section 5.7. In general, we can now deconstruct the Hochschild com-

plex of the Grothendieck construction (Ũ, ã) of (U , a) based upon the internal structure

of C. Here, the strategy is to cover (Ũ, ã) by other Grothendieck constructions, using base

change for pseudofunctors from Section 6.5. For instance, in Section 6.6, we consider

“generalized arrow categories”, and deconstruct them using iterated arrow category con-

structions. In Section 6.7, we observe how, in the case where C is a poset, the sheaf prop-

erty for Hochschild complexes on the one hand, and the arrow category construction

on the other hand, can be seen as complementary tools for deconstructing Hochschild

cohomology. In Section 6.8, we start from a pseudofunctor (U�, a�) : C∗ −→ Mapsc, which

we compare with the natural pseudofunctor of Grothendieck constructions

(U∗, a∗) : C∗ −→ Mapsc : C −→ (Ũ |C , ã|C ),

built from the restriction (U , a) of (U �, a�) to C. Our main Theorem 6.14 is heavily based

upon Keller’s arrow category argument in the case of a fully faithful functor b −→ a,

which is in fact a special case of our theorem. As an application, we recover the Mayer–

Vietoris triangles for ringed spaces from [15, Section 7.9].

6.1 Diagrams in the bicategory of categories

Let Cat be the bicategory of categories, bifunctors, and natural transformations

described in Section 3.1. Let C be an arbitrary small category and consider a pseudo-

functor

U : C −→ Cat : C 
−→ UC .

The pseudofunctor maps a map c : C −→ C ′ to a UC ′-UC -bifunctor U(c)= Sc and for an

additional c′ : C ′ −→ C ′′, there is an isomorphism

φc′,c : Sc′ ◦ Sc −→ Sc′c.

For a third map c′′ : C ′′ −→ C ′′′, we have a commutative diagram

(Sc′′ ◦ Sc′) ◦ Sc

α

��

φc′ .c◦1
�� Sc′′c′ ◦ Sc

φc′′c′ ,c
�� Sc′′c′c

1

��

Sc′′ ◦ (Sc′ ◦ Sc)
1◦φc′ ,c

�� Sc′′ ◦ Sc′c
φc′′ ,c′c

�� Sc′′c′c

(15)
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where α is the isomorphism from the bicategory Cat. We suppose moreover that

S1C = 1UC .

We define the Grothendieck construction of U to be the nonlinear C-graded cat-

egory U with UC as prescribed and, for c : C −→ C ′, U ∈ UC , U ′ ∈ UC ′ :

Uc(U,U
′)= Sc(U,U

′).

Recall that

Sc′ ◦ Sc(U,U
′)=

∐
V∈UC ′

Sc′(V,U ′′)× Sc(U,V)/∼ .

The composition on U is defined as the natural map

Sc′(U ′,U ′′)× Sc(U,U ′) �� Sc′ ◦ Sc(U,U ′′)
φc′ ,c

�� Sc′c(U,U ′′),

and we denote the image of (s′, s) under composition by s′s. There is a corresponding

category Ũ over C with Ob(Ũ)=∐
C∈C UC (see Remark 2.9).

6.2 Diagrams in the bicategory of map-graded categories

The construction from Section 6.1 can be extended in the following way. Let Map be

the bicategory of map-graded categories, bimodules, and their morphisms described in

Section 3.2. Let C be an arbitrary small category and consider a pseudofunctor

(U , a) : C −→ Map : C 
−→ (UC , aC ).

The pseudofunctor maps c : C −→ C ′ to an aC ′-aC -bimodule (U(c)= Sc, a(c)= Mc) and for

an additional c′ : C ′ −→ C ′′ there is an isomorphism

(φc′,c, Fc′,c) : (Sc′ ◦ Sc,Mc′ ⊗aC ′ Mc)−→ (Sc′c,Mc′c).

These isomorphisms satisfy the natural coherence axiom similar to (15) and (S1C ,M1C )=
(1UC ,1aC ).

Clearly, there is an underlying pseudofunctor

U : C −→ Cat : C 
−→ UC ,

which determines a nonlinear C-graded category U and associated category Ũ . We define

the Grothendieck construction of (U , a) to be the following Ũ-graded category ã. For
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U ∈ UC , we define

ãU = (aC )U .

For a morphism (c : C −→ C ′, s ∈ Sc(U,U ′)) in Ũ , with U ∈ UC , U ′ ∈ UC ′ , and for A∈ (aC )U ,

A′ ∈ (aC ′)U ′ , we put

ã(c,s)(A, A′)= (Mc)s(A, A′).

Recall that

(Mc′ ⊗aC ′ Mc)r(A, A′′)=
⊕

r=[(s′,s)],B

(Mc′)s′(B, A′′)⊗ (Mc)s(A, B)/∼ .

The composition on ã is defined as the composition of the natural map

(Mc′)s′(A′, A′′)⊗ (Mc)s(A, A′)−→ (Mc′ ⊗aC ′ Mc)[(s′,s)](A, A′′),

followed by the map

(Mc′ ⊗aC ′ Mc)[(s′,s)](A, A′′)
Fc′ ,c

�� (Mc′c)s′s(A, A′′).

6.3 Diagrams in the bicategory of linear categories

In many applications, we are in a somewhat simplified situation from Section 6.2. Let

Cat(k) be the bicategory of k-linear functors and bimodules. There is a natural map

Cat(k)−→ Map : a 
−→ atr where atr is the trivially graded category over e from Exam-

ple 2.11(2). Consider a pseudofunctor

a : C −→ Cat(k) : C 
−→ aC .

If we consider the corresponding (E, a) : C −→ Map : C 
−→ (e, aC ), we see that there is a

canonical isomorphism Ẽ ∼= C and carrying out the construction from Section 6.2, we

thus obtain a C-graded category ã with

ãC = aC .

For a morphism c : C −→ C ′ in C and for A∈ aC , A′ ∈ aC ′ , we have

ãc(A, A′)= Mc(A, A′),

and composition is defined in the obvious way.
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Conversely, let a be an arbitrary U-graded category. We define the naturally asso-

ciated pseudofunctor

A : U −→ Cat(k) : U −→AU ,

where AU is the category with Ob(AU )= aU and A(A, A′)= a1U (A, A′) and where for u:

U −→ U ′ in U , A(u)= Mu is the natural AU ′-AU -bimodule with

Mu(A, A′)= au(A, A′).

Then (U , a)∼= (U , Ã) and hence the correspondence between fibered U-graded categories

and pseudofunctors U −→ Cat(k) naturally extends to a correspondence between all U-

graded categories and pseudofunctors U −→ Cat(k).

6.4 Diagrams in the category of map-graded categories

Another specification of the setup from Section 6.2 occurs if we consider a pseudofunctor

(U , a) : Cop −→ Map : C 
−→ (UC , aC ),

mapping a morphism c : C −→ C ′ in C to a map-graded functor

(ϕc, Fc) : (UC ′ , aC ′)−→ (UC , aC ).

By Example 3.2(2), this gives rise to a UC ′-UC -bimodule Sϕc and a aC ′-Sϕc-aC -bimodule MFc

with

Sϕc(U,U ′)= UC (U, ϕc(U
′)); MFc

s (A, A′)= aC s(A, Fc(A
′)).

In fact, there are natural pseudofunctors Cat
op −→ Cat and Map

op −→ Map so that we

obtain a composed pseudofunctor

(U , a) : C −→ Map −→ Map : C 
−→ (UC , aC ).

For c : C −→ C ′, c′ : C ′ −→ C ′′ in C, we are given natural isomorphisms

(η, θ) : (ϕcϕc′ , FcFc′)= (ϕc, Fc)(ϕc′ , Fc′)−→ (ϕc′c, Fc′c)

satisfying the natural coherence axiom similar to (15). From this, we obtain natural

isomorphisms

(Sϕc′ ◦ Sϕc,MFc′ ⊗aC ′ MFc)−→ (Sϕc′c,MFc′c),
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in the following way. On the level of bifunctors, we have

Sϕc′ ◦ Sϕc(U,U ′′)=
∐

V∈UC ′

UC ′(V, ϕc′(U ′′))× UC (U, ϕc(V))/∼

ϕc×1

��

∐
V∈UC ′

UC (ϕc(V), ϕcϕc′(U ′′))× UC (U, ϕc(V))/∼

mUC

�� UC (U, ϕcϕc′(U ′′))

mUC (ηU ′′ ,−)
�� UC (U, ϕc′c(U ′′))= Sϕc′c(U,U ′′).

Similarly, on the level of bimodules we have

MFc′ ⊗aC ′ MFc
r (A, A′′)=

⊕
r=[(s′,s)],B

(aC ′)s′(B, Fc′(A′′))⊗ (aC )s(A, Fc(B))/∼

Fc⊗1

��

⊕
r=[(s′,s)],B

(aC )ϕc(s′)(Fc(B), FcFc′(A′′))⊗ (aC )s(A, Fc(B))/∼

maC

�� (aC )ϕc(s′)s(A, FcFc′(A′′))

maC (θA′′ ,−)
�� (aC )ϕC (s′)s(A, Fc′c(A′′))= MFc′c

s′s (A, A′′).

These maps determine the composition on the Grothendieck construction (Ũ, ã).

Remark 6.1. Note that the nonlinear C-graded category Ũ is the original Grothendieck

construction of U : C −→ Cat in the sense of Grothendieck. �

Remark 6.2. For a pseudofunctor a : C −→ Cat(k) landing in the 2-category of k-linear

categories, functors, and natural transformations, composing with Cat(k)−→ Cat(k)
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brings us in the situation of Section 6.3. The Grothendieck construction ã is the one

we used in [14] in order to turn a presheaf of k-algebras, or more generally a pseud-

ofunctor a : C −→ Cat(k), into a C-graded category and define its structured Hochschild

complex CC(ã). By [17], this complex computes the natural Hochschild cohomology of a

generalized from Gerstenhaber and Schack’s Hochschild cohomology of presheaves of

algebras [5, 6]. �

Remark 6.3. Let (U , a) : C −→ Map be a pseudofunctor. In a completely similar fashion,

the UC ′-UC -bifunctors Sϕc and aC ′-Sϕc-aC -bimodules MFc from Example 3.2(1) give rise to

a pseudofunctor

(U ′, a′) : C −→ Map −→ Map. �

6.5 Base change

Let U : C −→ Cat be a pseudofunctor as in Section 6.1 and let Φ : D −→ C be an arbitrary

functor. There is a resulting composed pseudofunctor

UΦ :D −→ C −→ Cat : D 
−→ UΦ(D),

with an associated category ŨΦ . The natural maps

Ob(Ũφ)=
∐
D∈D

UΦ(D) −→
∐
C∈C

UC = Ob(Ũ)

and

ŨΦ((D,U ), (D′,U ′))−→ Ũ((Φ(D),U ), (Φ(D′),U )),

given by ∐
d∈D(D,D′)

SΦ(d)(U,U
′)−→

∐
c∈C(Φ(D),Φ(D′))

Sc(U,U
′),

give rise to a functor

ϕ : ŨΦ −→ Ũ . (16)

Proposition 6.4. Let U and Φ be as above. If N1(Φ) is injective, then so is N1(ϕ). �

Proposition 6.5. Let U be as above and consider a collection (Φi : Di −→ C)i∈I of functors.

If, for n∈ N ∪ {∞}, the collection constitutes an n-cover in Cat, then so does the collection

(Φ̃i : ŨΦi −→ Ũ)i∈I . �
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Now let (U , a) : C −→ Map be a pseudofunctor as in Section 6.2 and Φ : D −→ C be

a functor. We now obtain a composed pseudofunctor

(UΦ, aΦ) :D −→ C −→ Map,

with an associated ŨΦ-graded category ãΦ .

Proposition 6.6. With the notation of Proposition 2.25, we have

ãΦ = (ã)ϕ.

In particular, there is a natural Cartesian map-graded functor

Φ̃ = (ϕ, δϕ,ã) : (ŨΦ, ãΦ)−→ (Ũ, ã). �

Next we use base changes to transform a pseudofunctor (U , a) : C −→ Map into a

functor

(U∗, a∗) : C∗ −→ Map

of Grothendieck constructions. We first define the category C∗ to be the arrow category

C →S e for the unique e-C-bifunctor S with S(C , ∗)= {∗}. For every C ∈ C, we obtain a

composition

(U |C , a|C ) : C/C −→ C −→ Map,

and a Cartesian map-graded functor (Ũ |C , ã|C )−→ (Ũ, ã). For every c : C ′ −→ C in C, we

have a natural functor C/C ′ −→ C/C and an induced Cartesian map-graded functor

(Ũ |C ′ , ã|C ′)−→ (Ũ |C , ã|C ) and it is not hard to organize these data into a functor

(U∗, a∗) : C∗ −→ Mapsc : C 
−→ (Ũ |C , ã|C ),

where we define (Ũ |∗, ã|∗)= (Ũ , ã).

Proposition 6.7. Suppose that C has finite products. Let (Ci)i∈I be a collection of objects

in C such that for every C ∈ C there exists a map C −→ Ci for some i. The composed

functor

C : C∗ −→ Mapsc −→ B∞ : C 
−→ CŨ |C (ã|C )

satisfies the sheaf property with respect to the collection of maps (Ci −→ ∗)i∈I in C∗. �
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Proof. By Example 2.34(2), the collection (C/Ci −→ C)i∈I constitutes an ∞-cover of C
in Cat. By proposition 6.5, the induced restriction maps in Mapsc also form an ∞-

cover. Further, it is readily seen that the pullback of Ci −→ ∗ and C j −→ ∗ in C∗ is given

by Ci × C j −→ ∗ for the product Ci × C j in C. The pullback of (Ũ |Ci , ã|Ci )−→ (Ũ , ã) and

(Ũ |C j , ã|C j )−→ (Ũ , ã) is given by (Ũ |Ci×C j , ã|Ci×C j )−→ (Ũ , ã). Thus, the result follows from

Theorem 4.7. �

6.6 Generalized arrow categories

We can cast the arrow category construction from Section 5.7 in the setup from

Section 6.2. Consider the path category

C ′ = 〈 0
≤

�� 1 〉.

With the notation of Section 5.7, we obtain a pseudofunctor

(W ′, c′) : C ′ −→ Map,

with

W ′
0 = V W ′

1 = U , W ′(0 ≤ 1)= S,

c′
0 = b, c′

1 = a, c′(0 ≤ 1)= M.

Then the Grothendieck constructions amount to arrow categories:

W̃ ′ = (V →S U); c̃′ = (b →M a).

We can generalize the arrow category in the following way. Consider the path

category

C = 〈 0
≤

�� 1
≤

�� · · ·
≤

�� n− 1
≤

�� n 〉.

We will call a category isomorphic to a such a category C for some n a chain category.

Then a pseudofunctor

(W, c) : C −→ Map,
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takes values

Wi, W(i ≤ j)= Sij,

ci, c(i ≤ j)= Mij,

and is equipped with isomorphisms

(φkji, Fkji) : (Sjk ◦ Sij,Mjk ⊗a j Mij)−→ (Sik,Mik).

Example 6.8. Choosing arbitrary graded categories (Wi, ci), bifunctors Si,i+1, and

bimodules Mi,i+1, it is possible to define the remaining data as generalized compositions

and tensor products

Sij = Sj−1, j ◦ · · · ◦ Si,i+1

and

Mij = Mj−1, j ⊗ · · · ⊗ Mi,i+1. �

Now let Φi j : Ci j ⊆ C be the subcategory

Ci j = 〈 i
≤

�� i + 1
≤

�� · · ·
≤

�� j − 1
≤

�� j 〉,

and put (W i j, ci j)= (WΦi j
, cΦ

i j
). We thus obtain natural injective Cartesian map-graded

functors Φ̃i j : (W̃ i j, c̃i j)−→ (W̃, c̃) as in Section 6.5.

On C01, we can define a new pseudofunctor

(W ′, c′) : C01 −→ Map,

with

W ′
0 =W0, W ′

1 =W1n, W(0 ≤ 1)= S,

c′
0 = c0, c′

1 = c1n, c′(0 ≤ 1)= M,

where S is the natural W̃1n-W0-bimodule and M the natural c̃i j-S-c0 bimodule determined

by Φ̃1n, Φ̃00 and the identity bimodule on (W̃, c̃) (we have (W̃00, c̃00)∼= (W0, c0)). Thus, we
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have

S(0, i)= S0i, M(0, i)= M0i.

It is readily seen, for instance, using the analysis from Section 5.8, that

(W̃, c̃′)∼= (W̃ ′, c̃′).

By induction on n, we can thus apply the results of Section 5.7.

Alternatively, we can take a global approach. Let Φ : obC ⊆ C be the subcategory

consisting of the objects and identity morphisms of C. There is a corresponding injective

Cartesian morphism Φ̃ : (W̃Φ, c̃Φ)−→ (W̃, c̃). For every individual object i ∈ C, we have a

further subcategory Φi : i ⊆ obC corresponding to Φ̃i : (Wi, ci)−→ (W̃Φ, c̃Φ). Clearly, the

complement of W̃Φ ⊆ W̃ constitutes an ideal which we denote by S. From (12), we thus

obtain an exact sequence of Hochschild complexes:

0 �� CW̃(c̃, (1c̃)S) �� CW̃(c̃) ��
n⊕

i=0

CWi (ci) �� 0.

Now consider a general pseudofunctor (U , a) : C −→ Map. We can use the internal

structure of C in order to describe (Ũ, ã) as an arrow category. Let Z be a thin ideal in

C with associated subcategories C0 ⊆ C of “objects below Z” and C1 of “objects above Z”

as described in Section 5.8 and suppose Ob(C)= Ob(C0) ∪ Ob(C1) such that C ∼= (C0 →Z C1)

for the natural restriction of 1C to a C1-C0-bifunctor Z . The inclusions C0 ⊆ C and C1 ⊆ C
give rise to injective Cartesian graded functors

(Ũ0, ã0)−→ (Ũ, ã), (Ũ1, ã1)−→ (Ũ , ã).

Consider the natural restriction of 1Ũ to a Ũ1-Ũ0-bifunctor T and the natural restriction

of 1ã to an ã1-T-ã0-bimodule N. Put Z̃ =∐
Sz(U ′,U ) running over z : C ′ −→ C in Z, U ∈ UC ,

U ′ ∈ UC ′ .

Proposition 6.9. The thin ideal Z̃ in Ũ gives rise to isomorphisms

Ũ ∼= (Ũ0 →T Ũ1), ã ∼= (ã0 →N ã1). �
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Remark 6.10. Note that a generalized arrow category over

C = 〈 0
≤

�� 1
≤

�� 2 〉

is used in the proof of [12, Section 4.6, Theorem (d)]. �

6.7 Covers by arrow categories

The example from Section 6.6 suggests how we can view some map-graded categories

as being assembled from the primary arrow category construction, which can be seen

as a certain way of glueing categories by means of a bimodule. Another way to glue

map-graded categories is along covers of underlying grading categories as described in

Section 2.6. More generally, we obtained a sheaf of Hochschild complexes on Mapsc in

Section 4.3 and in particular Mayer–Vietoris sequences in Section 4.5. In this section, we

explain how these different tools can be combined.

Let (C,≤) be (the category associated to) a finite poset. For elements a,b ∈ C, we

denote a� b if a≤ b and if a≤ c ≤ b for c ∈ C implies a= c of c = b. Let t0, . . . , tn be the

maximal elements of C and s0, . . . , sm be the minimal elements. For every composition

chain

si = c0 � c1 � · · · � ck � ck+1 � · · · � cp = tj,

we obtain a generated subcategory which is a chain category in the sense of Section 6.6.

Every chain of elements

a0 ≤ a1 ≤ a2 ≤ · · · ≤ al

can be refined and fitted into a composition chain

si = c0 � · · · � cn = a0 � · · · � cm = al � cm+1 � · · · � cp = tj,

containing all the elements ak. Thus, the collection of subcategories D ⊆ C generated by

composition chains of C constitutes an ∞-cover of C. Clearly, the intersection of two

such categories is itself a chain category, of strictly smaller length.

Let (Φi :Di ⊆ C)i∈I be the collection of chain categories generated by composition

chains of C. Put Di j =Di ∩ D j and Φi j :Di j −→ C, Φi
i j : Di j −→Di.
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Now consider a pseudofunctor

(W, c) : C −→ Map.

Put (Wi, ci)= (WΦi , cΦi ) and (Wi j, ci j)= (WΦi j , cΦi j ). We obtain a pullback diagram of injec-

tive Cartesian map-graded functors

(W̃i, c̃i)

Φ̃i

�� (W̃, c̃)

(W̃i j, c̃i j)

Φ̃i
i j

��

Φ̃
j
i j

�� (W̃ j, c̃ j)

Φ̃ j

��
(17)

By Proposition 6.5, the Φ̃i constitute an ∞-cover in Map and thus we can use Theorem 4.7

to relate the different Hochschild complexes. By the sheaf property, we obtain an exact

sequence

0 −→ CW̃(c̃)−→
⊕
i∈I

CW̃i
(c̃i)−→

⊕
{i, j}

CW̃i j
(c̃i j).

Alternatively, we can proceed inductively by first isolating one composition chain cat-

egory D0 and defining D1 to be the subcategory generated by all the other composition

chains. Both D1 and D01 =D0 ∩ D1 are covered by strictly fewer composition chain cate-

gories than D, and the occurring chains do not increase in length. Proceeding in a similar

fashion as before, we then obtain a Mayer–Vietoris sequence as in Section 4.5:

0 −→ CW̃(c̃)−→ CW̃0
(c̃0)⊕ CW̃1

(c̃1)−→ CW̃01
(c̃01)−→ 0.

Remark 6.11. The approach discussed in this section can be extended from a poset to

a delta, that is, a category C in which the arrows go only one way: for C ,C ′ ∈ C, we have

C(C ,C ′)= ∅ or C(C ′,C )= ∅. �

Example 6.12. Put C = {s, t0, t1} with s ≤ t0 and s ≤ t1 and consider (W, c) : C −→ Map with

W(s)=Ws, W(t0)=W0, W(t1)=W1, W(s ≤ t0)= S0, W(s ≤ t1)= S1,

c(s)= cs, c(t0)= c0, c(t1)= c1, c(s ≤ t0)= M0, c(s ≤ t1)= M1.
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The category C is covered by the two chain categories

D0 = 〈s ≤ t0〉, D1 = 〈s ≤ t1〉,

and we have D01 =D0 ∩ D1 = 〈s〉. We denote the inclusions by Φi, Φi j, Φi
i j as before. The

diagram (17) is given by

(Ws →S0 W0, cs →M0 c0)

Φ̃0

�� (W̃, c̃)

(W̃s, c̃s)

Φ̃0
01

��

Φ̃1
01

�� (Ws →S1 W1, cs →M1 c1)

Φ̃1

��
(18)

and we obtain a Mayer–Vietoris sequence

0 −→ CW̃(c̃)−→
1⊕

i=0

CWs→SiWi (cs →Mi ci)−→ CWs(cs)−→ 0.

Note that this example also fits into the setup from Proposition 6.7, with C0 = t0, C1 = t1,

and C0 × C1 = s. �

6.8 Comparison of pseudofunctors

Let C be a delta (see Definition 5.10). Now let us start from a pseudofunctor

(U , a) : C −→ Mapsc.

For every c : C ′ −→ C , we have an associated sub-Cartesian graded functor

(ϕc, Fc) : (UC ′ , aC ′)−→ (UC , aC ),

with associated UC -UC ′-bifunctor Sc = Sϕc and aC -Sϕc-aC ′-bimodule Mc = Mϕc from Exam-

ple 3.2. Let C∗ be the category C with terminal object ∗ and morphisms ∗C : C −→ ∗
attached as described in Section 6.5 and let (U�, a�) : C∗ −→ Mapsc be any pseudofunc-

tor such that the restriction to C equals (U , a).
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Example 6.13. We can consider (U �, a�) : C∗ −→ Mapsc with (U �C , : C ) 
−→ (UC , aC ) with

(U �∗ , a�∗)= (Ũ , ã) and the graded functors (UC , aC )−→ (Ũ, ã) induced by the natural func-

tors e −→ C∗ : ∗ −→ C . �

As described in Section 6.5, we also obtain an associated pseudofunctor

(U∗, a∗) : C∗ −→ Mapsc,

with sub-Cartesian graded functors

(ϕ̃c, F̃c) : (Ũ |C ′ , ã|C ′)−→ (Ũ |C , ã|C )

and

(ϕ̃∗C , F̃∗C ) : (Ũ |C , ã|C )−→ (Ũ, ã).

In this section, we compare the Hochschild complexes associated to (U�, a�) and (U∗, a∗).

For every C ∈ C, the functor e −→ C/C : ∗ 
−→ (1C : C → C ) gives rise to a natural graded

functor

(ϕC , FC ) : (UC , aC )−→ (Ũ |C , ã|C ).

Note that (ϕ̃c, F̃c)(ϕC ′ , FC ′) �= (ϕC , FC )(ϕc, Fc). Let (θ, H) : (Ũ , ã)−→ (U �∗ , a�∗) be the natural

sub-Cartesian functor with

(θ, H)(ϕ̃∗C , F̃∗C )(ϕC , FC )= (ϕ�∗C
, F �

∗C
).

By Example 5.11, the Grothendieck construction of (U�, a�) can be described as an arrow

category, yielding a commutative diagram

CŨ� (ã�)

∼=
��

ϕ∗
Ũ

��

CU�∗ (a
�
∗)

H∗�����������
(F �

∗C
)∗

��

CŨ (ã)

(F̃∗C )
∗

��

CUC (aC )

CŨ |C (ã|C )
F ∗

C

�����������

(19)

We will prove the following theorem.
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Theorem 6.14. (1) For every c : C ′ −→ C in C, the natural diagram

CŨ |C (ã|C )

F̃ ∗
c

��

F ∗
C

�� CUC (aC )

F ∗
c

��

CŨ |C ′ (ã|C ′)

F ∗
C ′

�� CUC ′ (aC ′)

(20)

is commutative in the homotopy category of B∞-algebras, and the horizontal arrows are

quasi-isomorphism.

(2) The horizontal arrows naturally give rise to a morphism between pseudo-

functors C −→ B∞:

CU∗|C (a
∗|C)−→ CU (a).

(3) If the canonical morphism

ω : 1a�∗ −→ RHomã
op (MH ,MH )

induces a quasi-isomorphism CU�∗ (a
�
∗, ω), then H∗ is a quasi-isomorphism and

we obtain a morphism of pseudofunctors C∗ −→ ho(B∞):

CU∗(a∗)−→ CU� (a�),

in which the top horizontal arrow is given by (H∗)−1. This holds in particular

is we choose (U �, a�) as in Example 6.13. �

As a consequence of the theorem, suppose that the conditions of Proposition 6.7

are fulfilled and CU∗(a∗) : C∗ −→ B∞ is a sheaf of Hochschild complexes. Then exact

sequences of Hochschild complexes following from the sheaf property for C•
U∗(a∗) nat-

urally translate to exact triangles in terms of C•
U� (a�) in which we were originally

interested. In particular, we naturally obtain Mayer–Vietoris exact triangles and their

induced long exact cohomology sequences. Before proving the theorem, we start with a

key example.

Example 6.15. The first example is in the setup for the original arrow category, as

described in the beginning of Section 6.6. So C = {0,1} with 0 ≤ 1. We consider (W, C) :
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C −→ Mapsc determined by (W0, c0)= (V, b), (W1, C1)= (U , a) and a single sub-Cartesian

graded functor

(ϕ, F ) : (V, b)−→ (U , a).

Using the bifunctor Sϕ and the bimodule MF , we obtain the arrow category

(W̃, c̃)= (V →ϕ U , b →F a).

Obviously, C/1 ∼= C, C/0 ∼= e, and the diagram (20) reduces to

CV→ϕU (b →F a)
ϕ∗
U

��

ϕ∗
V

��

CU (a)

F ∗

��

CV(b)
1

�� CV(b)

The fact that ϕ∗
U is a quasi-isomorphism and the diagram commutes in the homotopy

category of B∞-algebras is the content of Proposition 5.16. �

Proof. We will concentrate on the proof of (1). The proof of (3) then follows from dia-

gram (19) in which ϕ∗
Ũ becomes a quasi-isomorphism by Theorem 5.14.

Let C ∈ C be fixed. The category C/C is a delta with terminal object 1C : C −→ C .

Let eC ⊆ C/C be the category with single object 1C and single morphism 1C . Let DC ⊆ C/C
be the full subcategory consisting of all objects except 1C . For every c : C ′ −→ C , there is

a unique morphism c : c −→ 1C in C/C . According to Example 5.11, we obtain a thin ideal

Z = {c : c −→ 1C | 1C �= c : C ′ −→ C } and we have

C/C ∼=DC →Z eC ,

with Z(c,1C )= {c}. The restriction of (U |C , a|C ) along eC ⊆ C/C corresponds to the con-

stant category (UC , aC ). Denote the restriction of (U |C , a|C ) along DC ⊆ C/C by (VC , bC ).

Now consider 1C �= c : C ′ −→ C . Since C is a delta, there is a natural factorization C/C ′ −→
DC −→ C/C from which we obtain a natural factorization of (ϕ̃c, F̃c):

(Ũ |C ′ , ã|C ′)
(ϕ̃0

c ,F̃
0
c )

�� (ṼC , b̃C )
(ϕV ,Fb)

�� (Ũ |C , ã|C ).
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We further obtain a natural sub-Cartesian graded functor (ψ,G) fitting into commuta-

tive diagrams

(ṼC , b̃C )

(ψ,G)
�� (UC , aC )

(UC ′ , aC ′)

(ϕ̃0
c ,F̃

0
c )(ϕC ′ ,FC ′ )

��

(ϕc,Fc)

������������

(21)

for 1C �= c : C ′ −→ C . By Proposition 6.9, we have

Ũ |C ∼= (ṼC →ψ UC ), ã|C ∼= (b̃C →G aC ),

where we use the bimodules Sψ and MG . By Proposition 5.16 (see also Example 6.15), we

have a commutative diagram

CŨ |C (ã|C )
F ∗

C

��

F ∗
b

��

CUC (aC )

G∗�����������

CṼC
(b̃C )

in which F ∗
C is a quasi-isomorphism. Composing this diagram with

CṼC
(b̃C )

(F̃ 0
c )

∗

�� CŨ |C ′ (ã|C ′)

F ∗
C ′

�� CUC ′ (aC ′),

and making use of (21), we obtain the commutative diagram (20) as desired. �

Example 6.16. As an application, we look at the setup from [15, Section 7.6]. We con-

sider the poset Δ̃= {I | I ⊆ {1,2, . . . ,n}} ordered by reversed inclusion and the subposet

Δ⊆ Δ̃ of all J �= ∅. We consider a stack S̃ of Grothendieck categories on Δ̃ with exact

restriction functors and fully faithful right adjoints, and denote S for its restriction to

Δ. We further assume that the conditions (C1) and (C2) listed in [15, Section 7.6] are sat-

isfied. Let Mod(S) denote the category of presheaf objects in S. The examples to have

in mind are the stack of categories of sheaves of modules on a cover of a ringed space,

and the stack of quasi-coherent sheaf categories on a finite affine cover of a separated

scheme.
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From S̃, we obtain a pseudofunctor of categories of injectives

e : Δ̃ 
−→ Cat(k) : I 
−→ eI = Inj(S̃(I )).

For J ⊆ I , we have a corresponding fully faithful functor

FI J : eI −→ eJ .

Since these functors are fully faithful, there is a corresponding (e, e) : Δ̃−→ Mapsc and

the results from this section apply. The collection of objects {1}, {2}, . . . , {n} in Δ satisfies

the conditions in Proposition 6.7, where further Δ∗ ∼= Δ̃ and the product of subsets I and

J is given by I ∩ J. We denote the pseudofunctor

e∗ = (e|Δ)∗ :Δ∗ −→ Cat(k) : I 
−→ ẽ|I ,

where ẽ|I is the Grothendieck construction of the restriction of e to Δ/I = {J ∈Δ | I ⊆ J}
and ẽ|∗ = ẽ|Δ is the Grothendieck construction of e|Δ. Thus, we conclude that C(e∗) satis-

fies the sheaf property with respect to the collection of maps {i} −→ ∗ for i ∈ {1, . . . ,n}.
The first part of the proof of [15, Theorem 7.7.1] amounts to the verification of the condi-

tion in Theorem 6.14(3). We thus obtain from Theorem 6.14 a morphism of pseudofunc-

tors Δ∗ −→ ho(B∞):

C(e∗)−→ C(e),

in which all component maps are quasi-isomorphisms. The Mayer–Vietoris exact tri-

angle for ringed spaces proved in [15, Theorem 7.9.1] becomes an immediate corollary

of our theorem, and the proof given in [15] is in fact a special case of the proof of

Theorem 6.14. �

Remark 6.17. The sheaves of Hochschild complexes we obtain in this paper naturally

give rise to hypercohomology spectral sequences. However, if we start for instance from

a ringed space (X,OX), the site on which an associated sheaf of Hochschild complexes of

Grothendieck constructions of categories of injectives lives is fundamentally different

from the standard site associated to X. In Example 6.16, this difference is “brigded”

by a bimodule between the categories associated to the different suprema associated

to a cover of a ringed space (on the one hand, the ringed space and on the other hand,

the downset of the cover). A global approach along these lines (possibly combined with

techniques from [13]) should lead to new Hochschild cohomology spectral sequences.

 by guest on June 5, 2014
http://im

rn.oxfordjournals.org/
D

ow
nloaded from

 

http://imrn.oxfordjournals.org/


Hochschild Cohomology with Support 71

The construction of a Hochschild cohomology local-to-global spectral sequence

for general ringed spaces based upon map-graded Hochschild cohomology and hyper-

coverings remains work in progress [18]. �
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